DOI QR코드

DOI QR Code

Response of angle-ply laminated cylindrical shells with surface-bonded piezoelectric layers

  • Wang, Haojie (Faculty of Architectural, Civil Engineering and Environment, Ningbo University) ;
  • Yan, Wei (Faculty of Architectural, Civil Engineering and Environment, Ningbo University) ;
  • Li, Chunyang (Faculty of Architectural, Civil Engineering and Environment, Ningbo University)
  • Received : 2019.04.11
  • Accepted : 2020.08.03
  • Published : 2020.12.10

Abstract

A state-space method is developed to investigate the time-dependent behaviors of an angle-ply cylindrical shell in cylindrical bending with surface-bonded piezoelectric layers. Both the interfacial diffusion and sliding are considered to describe the properties of the imperfect interfaces. Particularly, a matrix reduction technique is adopted to establish the transfer relations between the elastic and piezoelectric layers of the laminated shell. Very different from our previous paper, in which an approximate numerical technique, i.e. power series expansion method, is used to deal with the time-dependent problems, the exact solutions are derived in the present analysis based on the piezoelasticity equations without any assumptions. Numerical results are finally obtained and the effects of imperfect interfaces on the electro-mechanical responses of the laminated shell are discussed.

Keywords

Acknowledgement

The research is supported by the Natural Science Foundation of Ningbo city (Grant No. 2017A610315 and 2018A610353) and the K.C. Wong Magna Fund of Ningbo University.

References

  1. Ahmadi, I. (2018), "Edge stresses analysis in laminated thick sandwich cylinder subjected to distributed hygrothermal loading", J. Sandwich Struct. Mater., 20(4), 425-461. https://doi.org/10.1177/1099636216657681.
  2. Ahmadi, I. (2020), "A three-dimensional formulation for levy-type transversely loaded cross-ply shell panels", J. Mech. Sci., 167(1), 105224. https://doi.org/10.1016/j.ijmecsci.2019.105224.
  3. Aliyari, P.A. and Alibeigloo, A. (2017), "Static and vibration analysis of sandwich cylindrical shell with functionally graded core and viscoelastic interface using DQM", Compos. Part B Eng., 126, 1-16. https://doi.org/10.1016/j.compositesb.2017.05.071.
  4. Bhaskar, K. and Balasubramanyam, G. (2002), "Accurate analysis of end-loaded laminated orthotropic cylindrical shells", Compos. Struct., 58, 209-216. https://doi.org/10.1016/S0263-8223(02)00122-8.
  5. Bisheh, H., Wu, N. and Hui, D. (2019), "Polarization effects on wave propagation characteristics of piezoelectric coupled laminated fiber-reinforced composite cylindrical shells", J. Mech. Sci., 161-162, 105028. https://doi.org/10.1016/j.ijmecsci.2019.105028.
  6. Cai, J.B., Chen, W.Q. and Ye, G.R. (2004), "Effect of interlaminar bonding imperfections on the behavior of angle-ply laminated cylindrical panels", Compos. Sci. Technol., 64, 1753-1762. https://doi.org/10.1016/j.compscitech.2003.12.009.
  7. Chaubey, A.K., Kumar, A. and Chakrabarti, A. (2018), "Novel shear deformation model for moderately thick and deep laminated composite conoidal shell", Mech. Based Design Struct. Machines, 46(5), 650-668. https://doi.org/10.1080/15397734.2017.1422433.
  8. Chen, W.Q. and Ding, H. J. (2001), "A state-space-based stress analysis of a multilayered spherical shell with spherical isotropy", J. Appl. Mech., 68,109-114. https://doi.org/10.1115/1.1343913.
  9. Chen, W.Q. and Lee, K.Y. (2005), "Benchmark solution of angle-ply piezoelectric-laminated cylindrical panels in cylindrical bending with weak interfaces", Arch. Appl. Mech., 74, 466-476. https://doi.org/10.1007/s00419-004-0357-2.
  10. Chen, W.Q., Ying, J., Cai, J.B. and Ye G.R. (2004), "Benchmark solution of imperfect angle-ply laminated rectangular plates in cylindrical bending with surface piezoelectric layers as actuator and sensor", Comput. Struct., 82, 1773-1784. https://doi.org/10.1016/j.compstruc.2004.05.011.
  11. Cho, M., Kim, K.O. and Kim, M.H. (1996), "Efficient higher-order shell theory for laminated composites", Compos. Struct., 34, 197-212. https://doi.org/10.1016/0263-8223(95)00145-X.
  12. Dutta, G., Panda S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", J. Appl. Comput. Math., 3(3), 2573-2592. https://doi.org/10.1007/s40819-016-0256-6.
  13. Fan, H. and Wang, G.F. (2003), "Interaction between a screw dislocation and viscoelastic interfaces", J. Solids Struct., 40, 763-776. https://doi.org/10.1016/S0020-7683(02)00553-X.
  14. Ghasem abadian, M.A. and Saidi, A.R. (2017), "Stability analysis of transversely isotropic laminated Mindlin plates with piezoelectric layers using a Levy-type solution", Struct. Eng. Mech., 62(6), 675-693. https://doi.org/10.12989/sem.2017.62.6.675.
  15. Guinovart-Sanjuan, D., Rizzoni, R., Rodriguez-Ramos, R., et al. (2017), "Behavior of laminated shell composite with imperfect contact between the layers", Compos. Struct., 176, 539-546. https://doi.org/10.1016/j.compstruct.2017.05.058.
  16. Hashin, Z. (1991), "Composite materials with viscoelastic interphase: creep and relaxation", Mech. Mater., 11, 135-148. https://doi.org/10.1016/0167-6636(91)90013-P.
  17. He, L.H. and Jiang, J. (2003), "Transient mechanical response of laminated elastic strips with viscous interfaces in cylindrical bending", Compos. Sci. Technol., 63, 821-828. https://doi.org/10.1016/S0266-3538(02)00284-1.
  18. Ipek, C. (2015), "The dispersion of the flexural waves in a compound hollow cylinder under imperfect contact between layers", Struct. Eng. Mech., 55(2), 335-348. http://dx.doi.org/10.12989/sem.2015.55.2.335.
  19. Jing, H.S. and Tzeng, K.G. (1995) "Elasticity solution for laminated anisotropic cylindrical panels in cylindrical bending", Compos. Struct., 30, 307-317. https://doi.org/10.1016/0263-8223(94)00045-X.
  20. Li, H., Wang, X. and Chen, J. (2019), "Nonlinear electromechanical coupling vibration of corrugated graphene/piezoelectric laminated structures", J. Mech. Sci., 150, 705-714. https://doi.org/10.1016/j.ijmecsci.2018.10.052.
  21. Mehar, K., Mishra, P.K. and Panda, S.K. (2020), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 2020, https://doi.org/10.1080/15376494.2020.1725193.
  22. Panda, S.K. and Singh, B.N. (2011), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel using nonlinear FEM", Finite Elements Analysis Design, 47(4), 378-386. https://doi.org/10.1016/j.finel.2010.12.008.
  23. Panda, S.K. and Singh, B.N. (2013a), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibers", Nonlinear Dynam., 74(1-2), 395-418. https://doi.org/10.1007/s11071-013-0978-5.
  24. Panda, S.K. and Singh, B.N. (2013b), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007.
  25. Ren, J.G. (1987), "Exact solutions for laminated cylindrical shells in cylindrical bending", Compos. Sci. Technol., 29, 168-187. https://doi.org/10.1016/0266-3538(87)90069-8.
  26. Singh, V.K. and Panda, S.K. (2015), "Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers", Smart Struct. Syst., 16(5), 853-872. https://doi.org/10.12989/sss.2015.16.5.853.
  27. Singh, V.K. and Panda, S.K. (2016), "Numerical investigation on nonlinear vibration behavior of laminated cylindrical panel embedded with PZT layers", Procedia Eng., 144, 660-667. https://doi.org/10.1016/j.proeng.2016.05.062.
  28. Singh, V.K. and Panda, S.K. (2017), "Geometrical nonlinear free vibration analysis of laminated composite doubly curved shell panels embedded with piezoelectric layers", J. Vib. Control, 23 (13), 2078-2093. https://doi.org/10.1177/1077546315609988.
  29. Singh, V.K., Hirwani, C.K., Panda S.K., Mahapatra, T.R. and Mehar, K. (2019), "Numerical and experimental nonlinear dynamic response reduction of smart composite curved structure using collocation and non-collocation configuration", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(5), 1601-1619. https://doi.org/10.1177/0954406218774362
  30. Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016a), "Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator", Compos. Struct., 157, 121-130. https://doi.org/10.1016/j.compstruct.2016.08.020.
  31. Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016b), "Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator", European J. Mech. A/Solids, 60, 300-314. https://doi.org/10.1016/j.euromechsol.2016.08.006.
  32. Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda, S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", IOP Conference Series: Mater. Sci. Eng., 178(1), Paper No. 012026. https://doi.org/10.1088/1757-899X/178/1/012026.
  33. Szekrenyes, A. (2018), "The role of transverse stretching in the delamination fracture of softcore sandwich plates", Appl. Math. Modelling, 63, 611-632. https://doi.org/10.1016/j.apm.2018.07.014.
  34. Tong, B., Li, Y.Q. and Zhu, X. (2019), "Three-dimensional vibration analysis of arbitrary angle-ply laminated cylindrical shells using differential quadrature method", Appl. Acoustics, 146, 390-397. https://doi.org/10.1016/j.apacoust.2018.11.031.
  35. Wang, X. and Schiavone, P. (2017), "Multilayered cylindrical panels with interface diffusion and sliding under thermomechanical loads", Acta Mechanica, 228, 3285-3296. https://doi.org/10.1007/s00707-017-1886-4.
  36. Wang, X. and Wang, C.Y. (2018), "Transient response of bilayered elastic strips with interfacial diffusion and sliding in cylindrical bending", Math. Mech. Solids, 23, 748-774. https://doi.org/10.1177/1081286516689383.
  37. Wang, X., Wang, C.Y. and Schiavone, P. (2016), "In-plane deformations of a nano-sized circular inhomogeneity with interface slip and diffusion", J. Eng. Sci., 108, 9-15. https://doi.org/10.1016/j.ijengsci.2016.08.006.
  38. Yan, W., Cai, J.B. and Chen, W.Q. (2009), "Monitoring interfacial defects in a composite beam using impedance signatures", J. Sound Vib., 326, 340-352. https://doi.org/10.1016/j.jsv.2009.04.030.
  39. Yan, W., Wang, J. and Chen, W. Q. (2014), "Cylindrical bending responses of angle-ply piezoelectric laminates with viscoelastic interfaces", Appl. Math. Modelling, 38, 6018-6030. https://doi.org/10.1016/j.apm.2014.05.025.
  40. Yan, W., Wang, J., Chen, W.Q. and Li, W.C. (2011), "Electromechanical impedance response of a cracked functionally graded beam with imperfectly bonded piezoelectric wafers", J. Intelligent Mater. Syst. Struct., 22(16), 1899-1912. https://doi.org/10.1177/1045389X11417196.
  41. Yan, W., Ying, J. and Chen, W.Q. (2006), "Response of laminated adaptive composite beams with viscoelastic interfaces", Compos. Struct., 74, 70-79. https://doi.org/10.1016/j.compstruct.2005.03.009.
  42. Yan, W., Ying, J. and Chen, W.Q. (2007), "The behavior of angle-ply laminated cylindrical shells with viscoelastic interfaces in cylindrical bending", Compos. Struct., 78, 551-559. https://doi.org/10.1016/j.compstruct.2005.11.017.
  43. Zenkour, A.M. and Fares, M.E. (2001), "Bending, buckling and free vibration of non-homogeneous composite laminated cylindrical shells using a refined first-order theory", Compos. Part B Eng., 32, 237-247. https://doi.org/10.1016/S1359-8368(00)00060-3.