• Title/Summary/Keyword: time-dependent creep

Search Result 257, Processing Time 0.025 seconds

TIME-DEPENDENT DEFORMATION OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Pae Ahran;Jeong Mi-Sook;Kim Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.717-726
    • /
    • 2005
  • Statement of problem. One of the common problems of provisional crown and fixed partial denture materials is that when they are subjected to constant loads for a long period of time, they exhibit a dimensional change (creep). Purpose. The aim of this study was to investigate the viscoelastic behaviour of polymer-based provisional crown and fixed partial denture materials with time at constant compressive load. Material and methods. Three dimethacrylate-based materials (Protemp 3 Garant, Temphase, Luxatemp) and one monomethacrylate-based material (Trim) were selected. Dimensional changes of the specimens were recorded by a LVDT to evaluate their viscoelastic behavior and creep strain. For all specimens, two loading procedures were used. At first, static compressive stress of 4 MPa was applied for 30 minutes and followed by 1 hour of strain recovery. Then, after 24 hours of water storage, the specimens were loaded again. The creep values between materials were statistically analyzed using one-way ANOVA and multiple comparison $Scheff\acute{e}$ test. Independent samples t-test was also used to identify the difference of creep strain between first and secondary loading conditions at the significance level of 0.05. Results. Following application of the first loading, Trim showed the highest maximum creep strain (32.7%) followed by Luxatemp, Protemp 3 Garant and Temphase, with values of 3.78%, 2.86% and 1.77%, respectively. Trim was significantly different from other materials (P<0.05), while there were no significant differences among Luxatemp, Protemp 3 Garant and Temphase (P>0.05). The highest recovery and permanent set of Trim, were significantly different from those of others (P<0.05). At the secondary loading of the dimethacrylate-based materials, creep deformation, recovery and permanent set decreased and the percentage of recovery increased, while in Trim, all values of the measurements increased. This result showed that the secondary loading at 24 hours produced a significant creep magnitude. Conclusion. The dimethacrylate-based provisional crown and fixed partial denture materials showed significantly higher creep resistance and lower deformation than the monomethacrylate-based material. Thus, monomethacrylate-based materials should not be used in long-term stress-bearing situations.

The Time-Dependent Behavior Characteristic of Bottom Ash by Maximum Particle Size and Application of Creep Models (Bottom Ash의 최대입경에 따른 시간-의존적 거동 특성 및 크리프 모델 적용성 검토)

  • Kim, Tae-Wan;Son, Young-Hwan;Bong, Tae-Ho;Noh, Soo-Kack;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.9-16
    • /
    • 2013
  • This study finds the characteristics of long-term settlement of Bottom Ash and to review the application of Singh-Mitchell creep equation and Burgers Model to the creep behavior of Bottom Ash. In the undrained state, it was confirmed that creep behavior appeared in the range to 30-80 % of the maximum deviator stress by applying condition in other three stresses through triaxial compression test after isotropically consolidation. By using sieve analysis, it was compared to each sample that was passed through 9.5 mm, 2 mm, 0.25 mm sieves. Also, using Singh-Mitchell creep equation and Burgers Model, it was compared between the theoretical behavior and the observed behavior for each sample. In the result, it is found that creep behavior of Bottom Ash is similar to the theoretical behavior of Singh-Mitchell creep equation and Burgers Model in early stage and it is possible to predict creep behavior of Bottom Ash by these models.

Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope - examples and parametrical study

  • Kmet, S.;Holickova, L.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.591-607
    • /
    • 2004
  • The substance of the use of the derived non-linear creep constitutive equations under variable stress levels (see first part of the paper, Kmet 2004) is explained and the strategy of their application is outlined using the results of one-step creep tests of the steel spiral strand rope as an example. In order to investigate the creep strain increments of cables an experimental set-up was originally designed and a series of tests were carried out. Attention is turned to the individual main steps in the production and application procedure, i.e., to the one-step creep tests, definition of loading history, determination of the kernel functions, selection and definition of constitutive equation and to the comparison of the resulting values considering the product and the additive forms of the approximation of the kernel functions. To this purpose, the parametrical study is performed and the results are presented. The constitutive equations of non-linear creep of cable under variable stress history offer a strong tool for the real simulation of stochastic variable load history and prediction of realistic time-dependent response (current deflection and stress configuration) of structures with cable elements. By means of suitable stress combination and its gradual repeating various loads and times effects can be modelled.

A Study on Parameters Measured during Small Punch Creep Testing (소형펀치 크리프 시험중 측정하는 변수에 대한 연구)

  • Park, Tae-Gyu;Sim, Sang-Hun;Yun, Gi-Bong;Jang, Chang-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.171-178
    • /
    • 2002
  • An effect is made in this study to deepen understanding of small punch(SP) creep testing which has been a round for about 10 years as a substitute for the conventional uniaxial creep testing. Even though considerable numbers of SP creep test program have been performed, most of the tests were aimed at measuring creep rupture lives only. Very flew studies showed interest on the meaning of what we were really measuring during the SP creep tests. In this paper meanings of the parameters measured during the SP creep testing, such as punch load and punch displacement rate are investigated using finite element analysis. It was shown that the measured parameters must represent the stress and strain rates of the material at the annular region located at about 0.65 mm from the center of the SP specimen. The material in this location would go through constant maximum stress and strain rate during the testing. Experimental verification is also discussed.

Experimental investigation of creep and shrinkage of reinforced concrete with influence of reinforcement ratio

  • Sun, Guojun;Xue, Suduo;Qu, Xiushu;Zhao, Yifeng
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.211-218
    • /
    • 2019
  • Predictions about shrinkage and creep of concrete are very important for evaluating time-dependent effects on structural performance. Some prediction models and formulas of concrete shrinkage and creep have been proposed with diversity. However, the influence of reinforcement ratio on shrinkage and creep of concrete has been ignored in most prediction models and formulas. In this paper, the concrete shrinkage and creep with different ratios of reinforcement were studied. Firstly, the shrinkage performance was tested by the 10 reinforced concrete beams specimens with different reinforcement ratios for 200 days. Meanwhile, the creep performance was tested by the 5 reinforced concrete beams specimens with different ratios of reinforcement under sustained load for 200 days. Then, the test results were compared with the prediction models and formulas of CEB-FIP 90, ACI 209, GL 2000 and JTG D 62-2004. At last, based on ACI 209, an improved prediction models and formulas of concrete shrinkage and creep considering reinforcement ratio was derived. The results from improved prediction models and formulas of concrete shrinkage and creep are in good agreement with the experimental results.

Creep Modelling of Reinforced Earth using Power Law-based Creep Models (Power Law 기반의 크리프 모델을 이용한 보강토 구조물의 크리프 모델링)

  • Kim, Jae-Wang;Kim, Sun-Bin;Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.164-178
    • /
    • 2009
  • The importance of long-term performance of reinforced earth structures has been gaining its attention as the use of reinforced earth structures as load supporting structures is increasing. When using reinforced earth structures as loading supporting structures the stability as well as serviceability requirements must be met. In that respect the time-dependent long term deformation characteristics should be well understood. In this study the applicability of power law-based creep models for modeling of creep deformation of the components of reinforced earth structures are examined.

  • PDF

Nonlinear Analysis of RC Shell Structures Including Creep and Shrinkage Effects (크리프와 건조수축을 고려한 RC쉘 구조물의 비선형 해석)

  • 정진환;한충목;조현영
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.181-188
    • /
    • 1993
  • In this study, a numerical method for the material nonlinear analysis of reinforced concrete shell structures including the time dependent effects due to creep and shrinkage is developed. Degenerate shell elements with the layered approach are used. The perfect or strain hardening plasticity model in compression and the linearly elastic model in tension until cracking for concrete are employed. The reinforcing bars are considered as a steel layer of equivalent thickness. Each :steel layer has an uniaxial behaviour resisting only the axial force in the bar direction. A bilinear idealization is adopted to model elasto-plastic stress-strain relationships. For the nonlinear anaysis, incremental load method combined with unbalanced load iterations for each load increment is used. To include time dependent effects of concrete, time domain is divided into several time steps which may have different length. Some numerical examples are presented to study the validity and applicability of the present method. The results are compared with experimental and numerical results obtained by other investigator.

Growth of Time-Dependent Strain in Reinforced Cement Concrete and Pre-stressed Concrete Flexural Members

  • Debbarma, Swarup Rn.;Saha, Showmen
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 2012
  • This paper presents the differences in growth of time-dependent strain values in reinforced cement concrete (RCC) and pre-stressed concrete (PSC) flexural members through experiment. It was observed that at any particular age, the time-dependent strain values were less in RCC beams than in PSC beams of identical size and grade of concrete. Variables considered in the study were percentage area of reinforcement, span of members for RCC beams and eccentricity of applied pre-stress force for PSC beams. In RCC beams the time-dependent strain values increases with reduction in percentage area of reinforcement and in PSC beams eccentricity directly influences the growth of time-dependent strain. With increase in age, a non-uniform strain develops across the depth of beams which influence the growth of concave curvature in RCC beams and convex curvature in PSC beams. The experimentally obtained strain values were compared with predicted strain values of similar size and grade of plane concrete (PC) beam using ACI 318 Model Code and found more than RCC beams but less than PSC beams.

Evaluation of Ct-parameter for Weld Interface Crack Considering Material Plastic Behavior (재료의 소성 거동을 고려한 용접 계면균열의 Ct 매개변수)

  • Yun, Gi-Bong;Lee, Jin-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.676-684
    • /
    • 2000
  • In this study, behavior of $C_t$ which is a well-known fracture parameter characterizing creep crack growth rate, is investigated for weld interface cracks. Finite element analyses were per formed for a C(T) specimen under constant loading condition for elastic-plastic-creeping materials. In modeling C(T) geometry, an interface was employed along the crack plane which simulated the interface between weld and base metals. The $C_t$ versus time relations were obtained under various creep constant combinations and plastic constant combinations for weld and base metals, respectively. A unified $C_t$ versus time curve is obtained by normalizing $C_t$ with $C^*$ and t with $t_T$ for all the cases of material constant variations.

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (II) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(II) - 해석적 연구 및 균열제어 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.133-142
    • /
    • 2000
  • This study deals with behavior of steel box girder bridges according to the concrete slab casting sequences and sectional types. The time dependent behavior of bridges caused by the differential setting of slab concrete resulting from time gap for each part of slab deck in a sequential placing method produces is analyzed. In correlation studies between girder section types and placing sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model proposed in the previous study. Finally, field recommendations in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slabs.

  • PDF