• Title/Summary/Keyword: time-dependent coefficients

검색결과 173건 처리시간 0.022초

Effective mechanical properties of micro/nano-scale porous materials considering surface effects

  • Jeong, Joonho;Cho, Maenghyo;Choi, Jinbok
    • Interaction and multiscale mechanics
    • /
    • 제4권2호
    • /
    • pp.107-122
    • /
    • 2011
  • Mechanical behavior in nano-sized structures differs from those in macro sized structures due to surface effect. As the ratio of surface to volume increases, surface effect is not negligible and causes size-dependent mechanical behavior. In order to identify this size effect, atomistic simulations are required; however, it has many limitations because too much computational resource and time are needed. To overcome the restrictions of the atomistic simulations and graft the well-established continuum theories, the continuum model considering surface effect, which is based on the bridging technique between atomistic and continuum simulations, is introduced. Because it reflects the size effect, it is possible to carry out a variety of analysis which is intractable in the atomistic simulations. As a part of the application examples, the homogenization method is applied to micro/nano thin films with porosity and the homogenized elastic coefficients of the nano scale thickness porous films are computed in this paper.

Sensitivity analysis of transonic flow past a NASA airfoil/wing with spoiler deployments

  • AKuzmin, lexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권3호
    • /
    • pp.232-240
    • /
    • 2014
  • Transonic flow past a NASA SC(2)-0710 airfoil with deployments of a spoiler up to $6^{\circ}$ was studied numerically. We consider angles of attack from $-0.6^{\circ}$ to $0.6^{\circ}$ and free-stream Mach numbers from 0.81 to 0.86. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations were obtained with a finite-volume solver using several turbulence models. Both stationary and time-dependent deployments of the spoiler were examined. The study revealed the existence of narrow bands of the Mach number, angle of attack, and spoiler deflection angle, in which the flow was extremely sensitive to small perturbations. Simulations of 3D flow past a swept wing confirmed the flow sensitivity to small perturbations of boundary conditions.

Applications of Stokes Eigenfunctions to the Numerical Solutions of the Navier-Stokes Equations in Channels and Pipes

  • Rummler B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.63-65
    • /
    • 2003
  • General classes of boundary-pressure-driven flows of incompressible Newtonian fluids in three­dimensional (3D) channels and in 3D pipes with known steady laminar realizations are investigated respectively. The characteristic physical and geometrical quantities of the flows are subsumed in the kinetic Reynolds number Re and a parameter $\psi$, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form $\underline{u}=u_{L}+U,\;where\;u_{L}$ is the scaled laminar velocity and periodical conditions are prescribed for U in the unbounded directions. The objects of our numerical investigations are autonomous systems (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction, where these systems (S) were received by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u.

  • PDF

오존 농도에 영향을 미치는 주 기상요소의 도출 및 예측모형 수립 (Statistical Analysis of the Meteorological Elements for Ozone and Development of the Simplified Model for Ozone Concentration)

  • 전의찬;우정헌
    • 한국대기환경학회지
    • /
    • 제15권3호
    • /
    • pp.257-266
    • /
    • 1999
  • In order to analyze the effect of meteorological elements on ozone concentration, we carried out cross-correlation of the elements with ozone concentraton, and time series analysis on them. As a result, it revealed that temperature, wind speed and humidity are not independent variables with ozone concentrations, and also, solar radiation and mixing height are the major elements that affect them. We developed models for ozone with solar radiation and mixing height as dependent variables to verify the effect of major meteorological elements. The predicted ozone concentration has strong correlation coefficients, So, We could conclude that we can predict ozone concentreation only with solar raidation and mixing height as dependents.

  • PDF

프링-크래핑 날개의 주기적 운동에 관한 수치적 흐름 가시화 (Numerical Flow Visualization of Cyclic Motion of a Fling-Clapping Wing)

  • 장조원;손명환
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1511-1520
    • /
    • 2004
  • A flow visualization of the two-dimensional rigid fling-clap motions of the flat-plate wing are performed to gain knowledge of butterfly mechanisms that might be employed by butterflies during flight. In this numerical visualization, the time-dependent Navier-Stokes equations are solved for cyclic fling and clap types of wing motion. The separation vortex pair that is developed in the fling phase of the cyclic fling and clap motion is observed to be stronger than those of the fling followed by clap and pause motion(1st cycle motion). This stronger separation vortex pair in the fling phase is attributable to the separation vortex pair of the outside space developed in the clap phase as it moves into the opening in the following fling phase. Accordingly, higher lift and power expenditure coefficients in the fling after clap phase is caused by the stronger separation vortex pair.

모드형상분석을 위한 연속 스캐닝 레이저 도플러 진동측정기 (A Continuous Scanning Laser Doppler Vibrometer for Mode Shape Analysis)

  • 라종필;최지은;박기환;경용수;왕세명;김경석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.274-280
    • /
    • 2002
  • This paper addresses the vibration mode shape measurement technique utilizing a Continuous Scanning Laser Doppler Vibrometer (CSLDV). The continuous scanning capability is added to the conventional discrete Laser Doppler Vibrometer by reflecting the laser beams on the surface of the object using two oscillating mirrors. The bow scanning resulted from the proposed scanning method is eliminated by feedback control. The velocity output signal from the CSLDV is modulated to give the spatial velocity distribution in terms of coefficients which are obtained from the Fast Fourier Transformation of the time dependent velocity signal. Using the Chebyshev series form, the analysis of the vibration mode shape techniques for straight Bine scanning and 2 dimensional scanning are presented and discussed. The performance of the proposed SLDV is presented using the experimental results of the vibration mode shape of a plate

  • PDF

가스터빈 연소기에서 1D 열음향 모델을 이용한 연소불안정 예측 (Combustion Instability Prediction Using 1D Thermoacoustic Model in a Gas Turbine Combustor)

  • 김진아;김대식
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.241-246
    • /
    • 2015
  • The objective of the current study is to develop an 1D thermoacoustic model for predicting basic characteristics of combustion instability and to investigate effects of key parameters on the instabilities such as effects of flame geometry and acoustic boundary conditions. Another focus of the paper is placed on limit cycle prediction. In order to improve the model accuracy, the 1D model was modified considering the actual flame location and flame length (i.e. distribution of time delay). As a result, it is found that the reflection coefficients have a great effect on the growth rate of the instabilities. In addition, instability characteristics are shown to be strongly dependent upon the fuel compositions.

Time-Dependent Optimal Heater Control Using Finite Difference Method

  • Li, Zhen-Zhe;Heo, Kwang-Su;Choi, Jun-Hoo;Seol, Seoung-Yun
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2254-2255
    • /
    • 2008
  • Thermoforming is one of the most versatile and economical process to produce polymer products. The drawback of thermoforming is difficult to control thickness of final products. Temperature distribution affects the thickness distribution of final products, but temperature difference between surface and center of sheet is difficult to decrease because of low thermal conductivity of ABS material. In order to decrease temperature difference between surface and center, heating profile must be expressed as exponential function form. In this study, Finite Difference Method was used to find out the coefficients of optimal heating profiles. Through investigation, the optimal results using Finite Difference Method show that temperature difference between surface and center of sheet can be remarkably minimized with satisfying Temperature of Forming Window.

  • PDF

온도변화에 따른 HEMT의 DC 특성 연구 (Temperature dependency of dc Characteristics for HEMTs)

  • 김진욱;황광철;이동균;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2000
  • In this paper, an analytical model for I-V characteristics of a HEMTs is Proposed. The developed model takes into account the temperature dependence of drain current. In high-speed ICs for optical communication systems and mobile communication systems, temperature variation affects performance; for example the gain, efficiency in analog circuits and the delay time, power consumption and noise mrgin in digital circuits. To design such a circuit taking into account the temperature dependence of the current-voltage characteristic is indispensible. This model based on the analytical relation between surface carrier density and Fermi potential including temperature dependent coefficients.

  • PDF

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.