• Title/Summary/Keyword: time-and-motion study

Search Result 2,256, Processing Time 0.034 seconds

ESTIMATING THE MOTION OF THE HUMAN JOINTS USING OPTICAL MOTION CAPTURE SYSTEM

  • Park, Jun-Young;Kyota, Fumihito;Saito, Suguru;Nakajima, Masayuki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.764-767
    • /
    • 2009
  • Motion capture systems allow to measure the precise position of markers on the human body in real time. These captured motion data, the marker position data, have to be fitted by a human skeleton model to represent the motion of the human. Typical human skeleton models approximate the joints using a ball joint model. However, because this model cannot represent the human skeleton precisely, errors between the motion data and the movements of the simplified human skeleton model happen. We propose in this paper a method for measuring a translation component of wrist, and elbow joints on upper limb using optical motion capture system. Then we study the errors between the ball joint model and acquired motion data. In addition, we discuss the problem to estimate motion of human joint using optical motion capture system.

  • PDF

Environment Implementation of Real-time Supervisory System Using Motion Detection Method (동작 검출 기법을 이용한 실시간 감시시스템의 구현)

  • 김형균;고석만;오무송
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.999-1002
    • /
    • 2003
  • In this study, embodied supervisory system that apply motion detection technique to small web camera and detects watch picture. Motion detection technique that use pixel value of car image that use in existing need memory to store background image. Also, there is sensitive shortcoming at increase of execution time by data process of pixel unit and noise. Suggested technique that compare extracting motion information by block unit to do to have complexion that solve this shortcoming and is strong at noise. Because motion information by block compares block characteristic value of image without need frame memory, store characteristic cost by block of image. Also, can get effect that reduce influence about noise and is less sensitive to flicker etc.. of camera more than motion detection that use pixel value in process that find characteristic value by block unit.

  • PDF

A Study on the Robust Motion Control Technology of Articulated Robot Arm (다관절 로봇 아암의 강인한 모션 제어방법에 관한 연구)

  • Ha, Eon-Tae;Kim, Hyun-Geon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2015
  • In this paper, we propose a new motion control technology to design robust control system of industrial robot. The system modeling of robotic manipulation tasks with constraints is presented, and the control architecture for unconstrained and constrained motion system with parametric uncertainties is synthesized. The optimal reference of robot manipulator is generated by the reference controller as a discrete state system and the control behavior of constrained system which has poor modeling information and time-invariant constraint function is improved motion control system is successfully evaluated by experiment to the desired tasks.

Real-Time Analysis of Occupant Motion for Vehicle Simulator

  • Oh, Kwang-Seok;Son, Kwon;Kim, Kwang-Hoon;Oh, Sang-Min;Choi, Kyung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.129.2-129
    • /
    • 2001
  • Visual effects are important cues for providing occupant s with virtual reality in a vehicle simulator which imitates real driving. The viewpoint of an occupant is sensitively dependent upon the occupant´s posture, therefore, the total body motion must be considered in a graphic simulator. A real time simulation is required for the dynamic analysis of complex human body motion. This study attempts to apply a neural network to the motion analysis in various driving situations. A full car of medium-sized vehicles was selected and modeled, and then analyzed using ADAMS in such driving conditions as bump-pass and acceleration. A multibody system analysis software, MADYMO, was used in the motion analysis of an adult male dummy in the seated position. Position data of the head were collected as inputs to the viewpoint movement. Based on these data, a back- propagation neural network was ...

  • PDF

Relaxation Behavior of a Microbubble under Ultrasonic Field (초음파장하에서 미소기포의 완화적 거동)

  • Karng, Sarng-Woo;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.550-555
    • /
    • 2000
  • Nonlinear oscillation of a microbubble under ultrasound was investigated theoretically. The bubble radius-time curves calculated by the Rayleigh-Plesset equation with a polytropic index and by the Keller-Miksis equation with the analytical solution for the Navier-Stokes equations of the gases were compared with the observed results by the light scattering method. This study has revealed that the bubble behavior such as the expansion ratio and the bouncing motion after the first collapse under ultrasound depends crucially on the retarded time of the bubble motion to the applied ultrasound.

  • PDF

Cows per Man-Hour(CMPH) based on Time and Motion Studies for various Milking Systems (착유시설 형태에 따른 착유 노동생산성에 관한 연구)

  • 정태영;김형화;김동일;이정호;이홍표;김종민;이연섭
    • Journal of Animal Environmental Science
    • /
    • v.3 no.2
    • /
    • pp.87-95
    • /
    • 1997
  • This study was peformed to compare work routine time and performance of milking systems by measuring motion and time in milking procedure. Data were collected from thirteen dairy farms among which milking was done by bucket in two farms, by pipelines in three, by tandem parlors in four including one remodeled side-opening, by herringborn parlors in three and by a parallel milking parlor. Recording time and motion for milking parlor. Recording time and motion for milking procedure was performed by stopwatch and notebook computer. Work routine elements were recorded and calculated into cows milked per-man-hour(CMPH). The results are as follows : Average milking time per cow(MTPC) in bucket and pipeline milking systems usually installed in cow stall were 442.7 and 395.8 seconds, respectively. And average CMPH of bucket and pipeline milking system were 144.5, 303.3, 272.5 and 380.3 seconds, respectively. And CMPH of tandem, herringbone, parallel and modified side-opening systems were 24.9, 11.9, 13.2 and 9.5 heads, respectively. CMPH was the highest in the tandem milking system and the lowest in the bucket milking facilities. CMPH, when milked in a parlor resulted in high value compared with bucket or pipeline milking systems installed in cow stable. They showed considerably low CMPH compared with the results of other countries. The reason why so low CMPH could be derived from type and mechanization of facilities and equipment, operator's ability, number of operator, idle time and milking procedure.

A Study on Sensor Motion-Induced Noise Reduction for Developing a Moving Transient Electromagnetic System (이동하면서 측정할 수 있는 시간영역전자탐사 시스템 개발을 위한 센서흔들림유도잡음 제거 연구)

  • Hwang, Hak Soo;Lee, Sang Kyu
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.53-57
    • /
    • 1998
  • Transient electromagnetic (TEM) method is also affected by cultural and natural electromagnetic (EM) noises, since it uses part of the broadband ($10^{-2}$ to $10^5Hz$) spectrum. Especially, predominant EM noise which affects a moving transmitter-receiver TEM system is sensor motion-induced noise. This noise is caused by the sensor motion in the earth magnetic field. The technique for reducing the sensor motion-induced EM noise presented in this paper is based on Halverson stacking. This Halverson stacking is generally used in a time-domain induced polarisation (IP) system to reject DC offset and linear drift. According to spectrum analysis of the vertical component of sensor motion-induced noise, the frequency range affected by the motion of an EM sensor is less than about 700 Hz in this study. With the decrease of the frequency, the spectral power caused by the motion of a sensor increases. For example, at the frequency of 200 Hz, the spectral power of the sensor motion-induced noise is $-90dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$, and at the frequency of 100 Hz, the spectral power of the sensor motion-induced noise is $-70dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$. With applying Halverson stacking to an artificial noise transient generated by adding a noise-free transient to sensor motion-induced noise measured without pulsing, it is shown that the filtered transient is nearly consistent with the noise-free transient within a delay time of $0.5{{\mu}sec}$. The inversion obtained from this filtered transient is in accord with the true model with an error of 5%.

  • PDF

Simulation method of ground motion matching for multiple targets and effects of fitting parameter variation on the distribution of PGD

  • Wang, Shaoqing;Yu, Ruifang;Li, Xiaojun;Lv, Hongshan
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.563-573
    • /
    • 2019
  • When generating spectrum-compatible artificial ground motion in engineering practices, the effect of the variation in fitting parameters on the distribution of the peak ground displacement (PGD) has not yet drawn enough attention. In this study, a method for simulating ground motion matching for multiple targets is developed. In this method, a frequency-dependent amplitude envelope function with statistical parameters is introduced to simulate the nonstationarity of the frequency in earthquake ground motion. Then, several groups of time-history acceleration with different temporal and spectral nonstationarities were generated to analyze the effect of nonstationary parameter variations on the distribution of PGD. The following conclusions are drawn from the results: (1) In the simulation of spectrum-compatible artificial ground motion, if the acceleration time-history is generated with random initial phases, the corresponding PGD distribution is quite discrete and an uncertain number of PGD values lower than the limit value are observed. Nevertheless, the mean values of PGD always meet the requirement in every group. (2) If the nonstationary frequencies of the ground motion are taken into account when fitting the target spectrum, the corresponding PGD values will increase. A correlation analysis shows that the change in the mean and the dispersion values, from before the frequencies are controlled to after, correlates with the modal parameters of the predominant frequencies. (3) Extending the maximum period of the target spectrum will increase the corresponding PGD value and, simultaneously, decrease the PGD dispersion. Finally, in order to control the PGD effectively, the ground motion simulation method suggested in this study was revised to target a specified PGD. This novel method can generate ground motion that satisfies not only the required precision of the target spectrum, peak ground acceleration (PGA), and nonstationarity characteristics of the ground motion but also meets the required limit of the PGD, improving engineering practices.

A Study on the Real-Time Analysis of a 6×6 Autonomous Vehicle (6×6 자율주행 차량의 실시간 해석을 위한 연구)

  • Cho, Du-Ho;Lee, Jung-Han;Yi, Ki-Chang;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1433-1441
    • /
    • 2009
  • In multibody dynamic analysis, one of the most important problems is to reduce computation times for real-time simulation. This paper presents the derivation procedure of equations of motion of a 6${\times}$6 autonomous vehicle in terms of chassis local coordinates which do not require coordinates transformation matrix to enhance efficiency for real-time dynamic analysis. Also, equations of motion are derived using the VT(velocity transformation) technique and symbolic computation method coded by MATLAB. The Jacobian matrix of the equations of motion of a system is derived from symbolic operations to apply the implicit integration method. The analysis results were compared with ADAMS results to verify the accuracy and approve the feasibility of real time analysis.

Batch Time Interval and Initial State Estimation using GMM-TS for Target Motion Analysis (GMM-TS를 이용한 표적기동분석용 배치구간 및 초기상태 추정 기법)

  • Kim, Woo-Chan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.285-294
    • /
    • 2012
  • Using bearing measurement only, target motion state is not directly obtained so that TMA (Target Motion Analysis) is needed for this situation. TMA is a nonlinear estimation technique used in passive SONAR systems. Also it is the one of important techniques for underwater combat management systems. TMA can be divided to two parts: batch estimation and sequential estimation. It is preferable to use sequential estimation for reducing computational load as well as adaptively to target maneuvers, batch estimation is still required to attain target initial state vector for convergence of sequential estimation. Selection of batch time interval which depends on observability is critical in TMA performance. Batch estimation in general utilizes predetermined batch time interval. In this paper, we propose a new method called the BTIS (Batch Time Interval and Initial State Estimation). The proposed BTIS estimates target initial status and determines the batch time interval sequentially by using a bank of GMM-TS (Gaussian Mixture Measurement-Track Splitting) filters. The performance of the proposal method is verified by a Monte Carlo simulation study.