• Title/Summary/Keyword: time variant channel

Search Result 52, Processing Time 0.021 seconds

A three-dimensional two-hemisphere model for unmanned aerial vehicle multiple-input multiple-output channels

  • Zixu Su;Wei Chen;Changzhen Li;Junyi Yu;Guojiao Gong;Zixin Wang
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.768-780
    • /
    • 2023
  • The application of unmanned aerial vehicles (UAVs) has recently attracted considerable interest in various areas. A three-dimensional multiple-input multiple-output concentric two-hemisphere model is proposed to characterize the scattering environment around a vehicle in an urban UAV-to-vehicle communication scenario. Multipath components of the model consisted of lineof-sight and single-bounced components. This study focused on the key parameters that determine the scatterer distribution. A time-variant process was used to analyze the nonstationarity of the proposed model. Vital statistical properties, such as the space-time-frequency correlation function, Doppler power spectral density, level-crossing rate, average fade duration, and channel capacity, were derived and analyzed. The results indicated that with an increase in the maximum scatter radius, the time correlation and level-crossing rate decreased, the frequency correlation function had a faster downward trend, and average fade duration increased. In addition, with the increase of concentration parameter, the time correlation, space correlation, and level-crossing rate increased, average fade duration decreased, and Doppler power spectral density became flatter. The proposed model was compared with current geometry-based stochastic models (GBSMs) and showed good consistency. In addition, we verified the nonstationarity in the temporal and spatial domains of the proposed model. These conclusions can be used as references in the design of more reasonable communication systems.

The Expectation and Sparse Maximization Algorithm

  • Barembruch, Steffen;Scaglione, Anna;Moulines, Eric
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.317-329
    • /
    • 2010
  • In recent years, many sparse estimation methods, also known as compressed sensing, have been developed. However, most of these methods presume that the measurement matrix is completely known. We develop a new blind maximum likelihood method-the expectation-sparse-maximization (ESpaM) algorithm-for models where the measurement matrix is the product of one unknown and one known matrix. This method is a variant of the expectation-maximization algorithm to deal with the resulting problem that the maximization step is no longer unique. The ESpaM algorithm is justified theoretically. We present as well numerical results for two concrete examples of blind channel identification in digital communications, a doubly-selective channel model and linear time invariant sparse channel model.

Performance Evaluation of OFDM Systems Dependent upon Pilot Patterns (파일럿 패턴에 따른 OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.273-279
    • /
    • 2007
  • I evaluate the BER performance of OFDM systems in frequency selective Doppler time variant fading channels, considering the pilot patterns for channel estimation. The performance of the systems is degraded due to channel estimation error. For the reduction of performance degradation in acceptable level, the optimum distance of pilot symbols in pilot pattern is 5 subcarriers in frequency domain and 6 OFDM block in time domain.

Coherent detection scheme for DS-CDMA system with M-ary orthogofnal signaling (M진 직교 신호화를 적용한 DS-CDMA 시스템의 동기 검파 기법)

  • 김기준;권순일;김호준;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.1016-1023
    • /
    • 1998
  • DS-CDMA system requeires a power-efficient transmission and reception scheme to increase capacity. In this paper, coherent detection of DS-CDMA system with M-ary orthogonal signaling is considered, and multistage decision-directed channel estimator is proposed. The multistage decision-directed channel estimator is based on the fact that better channel estimation can be obtained by using the final decisions of the detector with a conventional decision-directed channel estimator. In this scheme, symbol detector and channel estimator operate algernaely. by simulation, it is shown that the proposed method achieves performance gain capare to conventional method, specially at low signal to noise ratio over fast time-variant channel with diversity.

  • PDF

Power Allocation and Mode Selection in Unmanned Aerial Vehicle Relay Based Wireless Networks

  • Zeng, Qian;Huangfu, Wei;Liu, Tong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.711-732
    • /
    • 2019
  • Many unmanned aerial vehicle (UAV) applications have been employed for performing data collection in facilitating tasks such as surveillance and monitoring objectives in remote and dangerous environments. In light of the fact that most of the existing UAV relaying applications operate in conventional half-duplex (HD) mode, a full-duplex (FD) based UAV relay aided wireless network is investigated, in which the UAV relay helps forwarding information from the source (S) node to the destination (D). Since the activated UAV relays are always floating and flying in the air, its channel state information (CSI) as well as channel capacity is a time-variant parameter. Considering decode-and-forward (DF) relaying protocol in UAV relays, the cooperative relaying channel capacity is constrained by the relatively weaker one (i.e. in terms of signal-to-noise ratio (SNR) or signal-to-interference-plus-noise ratio (SINR)) between S-to-relay and relay-to-D links. The channel capacity can be optimized by adaptively optimizing the transmit power of S and/or UAV relay. Furthermore, a hybrid HD/FD mode is enabled in the proposed UAV relays for adaptively optimizing the channel utilization subject to the instantaneous CSI and/or remaining self-interference (SI) levels. Numerical results show that the channel capacity of the proposed UAV relay aided wireless networks can be maximized by adaptively responding to the influence of various real-time factors.

Performance of Carrier Frequency Offset Compensation using CAZAC Code in Time and Spatial Variant Underwater Acoustic Channel (시·공간 변동 수중음향 채널에서 CAZAC 코드를 적용한 반송파 주파수 옵셋 보상 기법의 성능평가)

  • Park, Jihyun;Bae, Minja;Kim, Jongju;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1229-1236
    • /
    • 2016
  • In underwater acoustic multipath channel, a performance of underwater acoustic (UWA) communication systems is affected by dynamic variation of boundary and high temporal and spatial variability of the channel conditions. Time and spatial variations of UWA channel induce a carrier frequency offset (CFO) since a phase and a frequency of received signal mismatch with a transmitting signal. Therefore, a performance of a phase shift keying underwater acoustic communication system is degraded. In this study, we have analyzed a performance of CFO estimation and compensation using a phase code in time and spatial variation channel. A constant amplitude zero autocorrelation (CAZAC) signal is applied as a phase code signal and its performance is evaluated in water tank. The bit error rate of a quadrature phase shift keying (QPSK) system with a phase code is improved about 4 to 10 times better than that without a phase code.

Performance improvement of underwater target distance estimation using blind deconvolution and time of arrival method (블라인드 디컨볼루션 및 time of arrival 기법을 이용한 수중 표적 거리 추정 성능 향상 기법)

  • Han, Min Su;Choi, Jea Young;Son, Kweon;Lee, Phil Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.378-386
    • /
    • 2017
  • Accurate distance measurement between maneuver target in underwater and measuring devices is required to perform quantitative test evaluation in marine weapons system R&D process. In general, the target distance is measured using a one-way ToA (Time of Arrival) method that calculates the time difference between transmitted and received signals from the two accurately synchronized devices. However, the distance estimation performance is degraded because of the multi-path environments. In this paper, the time-variant transfer function of complex underwater environment is estimated from each received data frame using RBD (Ray-based Blind Deconvolution), and the estimated time-variant transfer function is then used to get rid of the effect about complex underwater environment and to recover the data signal using PTRM (Passive Time Reversal Mirror). The result from the simulation and experimental data show that the suggested method improve the distance estimation performance when comparing with the conventional ToA method.

Performance Evaluation of Downlink OFDMA Systems (OFDMA 하향링크 시스템의 성능 분석)

  • Choi Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.798-805
    • /
    • 2006
  • I evaluate the BER performance of downlink OFDMA systems in time variant Rayleigh Doppler fading channel, considering the carrier frequency offset and the nonlinear high power amplifier. I obtain the required output back-off of the nonlinear amplifier and value of frequency offset for good BER performance. And I also analyze the BER degradation upon Doppler fading channel.

Performance Evaluation of Uplink OFDMA Systems (OFDMA 상향링크 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2391-2397
    • /
    • 2007
  • I evaluate the BER performance of uplink OFDMA systems in time variant Rayleigh Doppler fading channel, considering the carrier frequency offset and the nonlinear high power amplifier. I obtain the required output back-off of the nonlinear amplifier and value of frequency offset for good BER performance. And I also analyze the BER degradation upon Doppler fading channel.

Reduced Complexity Signal Detection for OFDM Systems with Transmit Diversity

  • Kim, Jae-Kwon;Heath Jr. Robert W.;Powers Edward J.
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.75-83
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) systems with multiple transmit antennas can exploit space-time block coding on each subchannel for reliable data transmission. Spacetime coded OFDM systems, however, are very sensitive to time variant channels because the channels need to be static over multiple OFDM symbol periods. In this paper, we propose to mitigate the channel variations in the frequency domain using a linear filter in the frequency domain that exploits the sparse structure of the system matrix in the frequency domain. Our approach has reduced complexity compared with alternative approaches based on time domain block-linear filters. Simulation results demonstrate that our proposed frequency domain block-linear filter reduces computational complexity by more than a factor of ten at the cost of small performance degradation, compared with a time domain block-linear filter.