• Title/Summary/Keyword: time to corrosion initiation

Search Result 82, Processing Time 0.022 seconds

Study on the hydrogen embrittlement crack susceptibility of stainless steel overlaid weld metal (1) (스테인레스강 Overlay용접부의 수소취화 균열감수성에 관한 연구 1)

  • 이영호
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.39-52
    • /
    • 1990
  • The research is to insure the soundness of the stainless steel overlaid weld metal(21/4Cr-IMo steel + SUS 309L) for a pressure vessel application. Detail studies were conducted for the PWHT influence on the micrstructure and intergranular corrosion characteristics of the overlaid weld metal as well as initiation of hydrogen embrittlement crack(or Disbonding) when welded metal are exposed to the hydrogen atmosphere. Hydrogen was experimentally charged to the overlaid weld metal in order to study PWHT effect on the susceptibility of hydrogen embrittlement crack. The results of this research are as follows: 1. At the bond region, austenite grain of the stainless steel side became coarsed and Cr23C6 type carbide was precipitated at the coarsed austenitic grain boundaries. Intergranular Corrosion width(by Straiss test) increased with increasing PWHT temperature and PWHT time.

  • PDF

Investigation on Cavitation-Erosion Damage with the Cavitation Amplitude of Al Alloy Materials in Seawater (해수 내 다양한 알루미늄 선박용 재료의 캐비테이션 진폭에 따른 캐비테이션-침식 손상 연구)

  • Yang, Ye-Jin;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.250-258
    • /
    • 2020
  • Recently, 5000 series and 6000 series Al alloys have been used as hull materials for small and medium-sized ships because of their excellent weldability, corrosion resistance, and durability in marine environments. Al ships can navigate at high speed due to their light weight. However, cavitation-erosion problems cause reducing durability of Al ship at high speed. In this investigation, 5052-O, 5083-H321, and 6061-T6 Al alloy materials were used to evaluate the damage characteristics with amplitude (cavitation strength). As a result of the electrochemical experiments, the corrosion current density and corrosion potential of 6061-T6 in seawater were 8.52 × 10-7 A/㎠ and -0.771 V, respectively, presenting the best corrosion resistance. The cavitation-erosion experiment showed that 5052-O had the lowest hardness value and cavitation-erosion resistance. 5052-O also had a very short incubation period. As the experiment progressed for 5052-O, pitting formed and grew in a short time, and was observed as severe cavitation-erosion damage that eliminated in large quantities. Among the three specimens, 5083-H321 presented the highest hardness value and the damage rate was the smallest after the initiation of pitting.

Numerical modeling of concrete cover cracking due to steel reinforcing bars corrosion

  • Mirzaee, Mohammad Javad;Alaee, Farshid Jandaghi;Hajsadeghi, Mohammad;Zirakian, Tadeh
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.693-700
    • /
    • 2017
  • Concrete cover cracking due to the corrosion of steel reinforcing bars is one of the main causes of deterioration in Reinforced Concrete (RC) structures. The oxidation level of the bars causes varying levels of expansion. The rebar expansions could lead to through-thickness cracking of the concrete cover, where depending on the cracking characteristics, the service life of the structures would be affected. In this paper, the effect of geometrical and material parameters, i.e., concrete cover thickness, reinforcing bar diameter, and concrete tensile strength, on the required pressure for concrete cover cracking due to corrosion has been investigated through detailed numerical simulations. ABAQUS finite element software is employed as a modeling platform where the concrete cracking is simulated by means of eXtended Finite Element Method (XFEM). The accuracy of the numerical simulations is verified by comparing the numerical results with experimental data obtained from the literature. Using a previously proposed empirical equation and the numerical model, the time from corrosion initiation to the cover cracking is predicted and then compared to the respective experimental data. Finally, a parametric study is undertaken to determine the optimum ratio of the rebar diameter to the reinforcing bars spacing in order to avoid concrete cover delamination.

Analysis of Fracture Surface of API-X-80 Steel Failed by Hydrogen Induced Cracking (수소유기 균열된 APi-X80 강재의 파면 분석)

  • Kim, Ma-Ro;Gu, Da-Yeong;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.124-124
    • /
    • 2015
  • Acoustic microscopy and scanning electron microscopy were applied to non-destructively evaluate the hydrogen-induced cracking of API X-80 steels and to find the initiation time of the crack. The API X-80 steel had the average grain size of about $4-10{\mu}m$. The hardness was reduced from 240 to 202 [Hv] after exposing in HIC environment for 2-days. Friction coefficient and wear loss were 0.745 and 0.392 mm, respectively. Empirical equation of corrosion potential and corrosion rate of the steel with HIC time in $5%NaCl-0.5%CH_3COOH$ at $25^{\circ}C$ were $Eh\;(up)=0.06^*t[day]+0.2951$, $Eh(down)=0.376^*t[day]+0.5938$, respectively. HIC grew with micro-size after 1-day exposure. The HIC tended to propagate on the surface with Al, Si, Ti, and Mn.

  • PDF

Optimal Electropolishing Condition of Austenitic Stainless Steel Specimens for Slow Strain Rate Tensile Testing (오스테나이트 스테인리스강 저속인장시험편의 최적 전해연마 특성)

  • Min-Jae Choi;Eun-Byeoul Jo;Dong-Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.457-465
    • /
    • 2023
  • Irradiation-assisted stress corrosion cracking (IASCC) is one of the main degradation mechanisms of austenitic stainless steels, which are used as reactor internal materials. Slow strain rate testing (SSRT) has been widely applied to evaluate the IASCC initiation characteristics of proton-irradiated tensile specimens. Tensile specimens require low surface roughness for micro-crack observation, and electropolishing is the most important specimen pre-treatment process used for this. In this study, optimal electropolishing conditions were examined through analyzing results of polarization experiments and surface roughness measurements after electropolishing. Corrosion cell and electropolishing equipment were fabricated for polarization tests and electropolishing experiments using SSRT specimens. The experimental parameters were electropolishing time, current density, electrolyte temperature, and stirring speed. The optimal electropolishing conditions for SSRT tensile specimens made of type 316 stainless steel were evaluated as a polishing time of 180 seconds, a current density of 0.15 A/cm2, an electrolyte temperature of 60 ℃, and a stirring speed of 200 RPM.

Reliability Analysis for Stress Corrosion Cracking of Suspension Bridge Wires (현수교케이블의 응력부식에 관한 신뢰성해석)

  • Taejun;Andrzej S. Nowak
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.537-544
    • /
    • 2003
  • This paper deals with stress corrosion cracking behavior of high strength steel exposed to marine environments. The objective is to determine the time to failure as a function of hydrogen concentration and tensile stress in the wires. A crack growth curve is modeled using finite element method (FEM) program. The coupled hydrogen diffusion-stress analyses of SCC were programmed separately. The first part is calculating stress and stress intensity /sup 1)/factor of a cylindrical shell, prestressing tendon or suspension bridge wires, from the initiation of cracks to rupture. Virtual crack extension method, contour integral method, and crack tip elements are used for the calculation of stresses in front of the crack tip. Comparisons of the result show a good agreement with the analytical equations and wire tests. The second part of the study deals with the programming of hydrogen diffusion, affected by hydrostatic stress, calculated at the location of boundary of plastic area around the crack tip. The results of paper can be used in the design and management of prestressed structures, cable stayed and suspension bridges. Time dependent correlated parallel reliabilities of a cable, composed of 36 wires, were evaluated by the consideration of the deterioration of stress corrosion cracking.

  • PDF

Prediction of initiation time of corrosion in RC using meshless methods

  • Yao, Ling;Zhang, Lingling;Zhang, Ling;Li, Xiaolu
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.669-682
    • /
    • 2015
  • Degradation of reinforced concrete (RC) structures due to chloride penetration followed by reinforcement corrosion has been a serious problem in civil engineering for many years. The numerical simulation methods at present are mainly finite element method (FEM) and finite difference method (FDM), which are based on mesh. Mesh generation in engineering takes a long time. In the present article, the numerical solution of chloride transport in concrete is analyzed using radial point interpolation method (RPIM) and element-free Galerkin (EFG). They are all meshless methods. RPIM utilizes radial polynomial basis, whereas EFG uses the moving least-square approximation. A Galerkin weak form on global is used to attain the discrete equation, and four different numerical examples are presented. MQ function and appropriate parameters have been proposed in RPIM. Numerical simulation results are compared with those obtained from the finite element method (FEM) and analytical solutions. Two case of chloride transport in full saturated and unsaturated concrete are analyzed to test the practical applicability and performance of the RPIM and EFG. A good agreement is obtained among RPIM, EFG, and the experimental data. It indicates that RPIM and EFG are reliable meshless methods for prediction of chloride concentration in concrete structures.

Service-life Prediction of Reinforced Concrete Structures in Subsurface Environment (지중 환경하에서의 철근콘크리트 구조물의 열화인자별 한계수명 평가)

  • Kwon, Ki-jung;Jung, Haeryong;Park, Joo-Wan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • This paper focuses on the estimation of durability and service-life of reinforced concrete structures in Wolsong Low- and intermediate-level wastes Disposal Center (WLDC) in Korea. There are six disposal silos located in the saturated environment. The silo concrete is degraded due to reactions with groundwater and chemical attacks, and finally it will lose its properties as a transport barrier. The infiltration of sulfate and magnesium, leaching of potassium hydroxide, and chlorine induced corrosion are the most significant factors for degradation of reinforced concrete structure in underground environment. From the result of evaluation of the degradation time for each factor, the degradation rate of the reinforced concrete due to sulfate and magnesium is $1.308{\times}10^{-3}cm/yr$, and it is estimated to take 48,000 years for full degradation while potassium hydroxide is leached in depth of less than 1.5 cm at 1,000 years after the initiation of degradation. In case of chlorine induced corrosion, it takes 1,648 years to initiate corrosion in the main reinforced bar and 2,288 years to reach the lifetime limit of the structural integrity, and thus it is evaluated as the most significant factor.

A Study on Correlation Between Cyclic Drying-Wetting Accelerated Corrosion Test and Long-term Exposure Test (건습반복 부식촉진시험 및 장기폭로시험의 상관성에 대한 연구)

  • Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.136-143
    • /
    • 2016
  • There are various method for evaluating the durability life of concrete structures due to salt damage. The best way is to perform a corrosion test for a rebar embedded in concrete specimen was exposure to marine environment. However, this method has the disadvantage that it takes a long period of time. Also, accelerated corrosion test which was complemented complements the time-consuming weakness is limited to apply because it could not reveal a correlation between long-term exposure test. Accordingly, the purpose of this study is to derive a correlation coefficient between cycle drying-wetting accelerated corrosion test and long-term exposure test. Corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash(FA) and blast furnace slag(BS), and the other two samples having two water/cement ratio(W/C = 0.6, 0.35) without admixture(OPC 60 and OPC 35). The accelerated corrosion test was carried out by two case, i.e., one is a cyclic drying-wetting method(case 1), and the other is a artificial seawater ponding test method(case 2). Whether corrosion occurs, it was measures using half-cell potential method. The results indicated that case 1 is to accelerated the corrosion of rebar about 24~36% as compared with case 2, then the corrosion of rebar embedded in concrete occurred according to the order of OPC60, FA, BS, OPC35. Correlation coefficient between accelerated corrosion test and long-term exposure test, case 1 is 4.23 to 5.42, and case 2 is 6.54 to 7.82.

The Effects of Aging Heat Treatments on the Hardness and Electrocemical Corrosion for the Nimonic 80A Superalloy (Nimonic 80A 초내열합금의 경도와 전기화학적부식에 미치는 시효열처리의 효과)

  • 나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.660-669
    • /
    • 1998
  • In this paper the Hardness and Electro-chemical corrosion of the Nimonic 80A superalloy were studied. It aging heat treatments was carried out at $650^{\circ}C$, $700^{\circ}C$, $750^{\circ}C$,$800^{\circ}C$ and $850^{\circ}C$ with different time of 20min , 30min 1hour, 2hours, 4hours, and 16hours additionally 64hours and 128hours at $650^{\circ}C$. The obtained results were as follows; 1. As aging temperature increased the time for the maximum hardness was reduced from 128hours at $650^{\circ}C$ to 30min at $850^{\circ}C$ whereas the highest hardness was reduced from Hv 381 at $650^{\circ}C$ to Hv 321 at $850^{\circ}C$. 2. In the Electro-chemical corrosion test as a function of aging heat treatment time and tem-perature the corrosion potential was reversely proportional to Hardness which indicated the effects of ${\gamma}/{\gamma}'$ coherency of base material and precipitate. 3. Initiation point of the pitting was observed at grain boundary twin boundary and near${\gamma}'$ pre-cipitates. The results of composition analysis by EDS at this point indicated that sulphur originat-ed from 1N $H_2SO_4$ solution was found in depletion at the grain boundaries and the pit which arouse in the near precipitates were lack of Al Ti and Ni which are the main element of ${\gamma}'$ The depletion of such element was cause breakdown of passive film.

  • PDF