• Title/Summary/Keyword: time to corrosion initiation

Search Result 82, Processing Time 0.023 seconds

Probabilistic evaluation of chloride ingress process in concrete structures considering environmental characteristics

  • Taisen, Zhao;Yi, Zhang;Kefei, Li;Junjie, Wang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.831-849
    • /
    • 2022
  • One of the most prevalent causes of reinforced concrete (RC) structural deterioration is chloride-induced corrosion. This paper aims to provide a comprehensive insight into the environmental effect of RC's chloride ingress process. The first step is to investigate how relative humidity, temperature, and wind influence chloride ingress into concrete. The probability of initiation time of chloride-induced corrosion is predicted using a probabilistic model that considers these aspects. Parametric analysis is conducted on several factors impacting the corrosion process, including the depth of concrete cover, surface chloride concentration, relative humidity, and temperature to expose environmental features. According to the findings, environmental factors such as surface chloride concentration, relative humidity and temperature substantially impact on the time to corrosion initiation. The long- and short-distance impacts are also examined. The meteorological data from the National Meteorological Center of China are collected and used to analyze the environmental characteristics of the chloride ingress issue for structures along China's coastline. Finally, various recommendations are made for improving durability design against chloride attacks.

Probability-Based Prediction of Time to Corrosion Initiation of RC Structure Exposed to Salt Attack Environment Considering Uncertainties (불확실성을 고려한 RC구조물의 부식개시시기에 대한 확률 기반 예측)

  • Kim, Jin-Su;Do, Jeong-Yun;Hun, Seung;Soh, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.249-252
    • /
    • 2005
  • Chloride ingress is a common cause of deterioration of reinforced concrete structures. Modeling the chloride ingress is an important basis for designing reinforced concrete structures and for assessing the reliability of an existing structure. The modelling is also needed for predicting the deterioration of a reinforced structure. This paper presents an approach for the probabilistic modeling of the chloride-induced corrosion of reinforcement steel in concrete structures that takes into account the uncertainties in the physical models. The parameters of the models are modeled as random variables and the distribution of the corrosion time and probability of corrosion are determined by using Monte Carlo simulation. The predictions of the proposed model is very effective to do the decision-making about initiation time and deterioration degree.

  • PDF

Interaction of Mechanics and Electrochemistry for Magnesium Alloys

  • Han, En-Hou;Wang, JianQiu;Ke, Wei
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.243-251
    • /
    • 2008
  • Magnesium alloys become popular research topic in last decade due to its light weight and relatively high strength-to-weight ratio in the energy aspiration age. Almost all structure materials are supposed to suspend stress. Magnesium is quite sensitive to corrosive environment, and also sensitive to environmental assisted cracking. However, so far we have the limited knowledge about the environmental sensitive cracking of magnesium alloys. The corrosion fatigue (CF) test was conducted. Many factors' effects, like grain size, texture, heat treatment, loading frequency, stress ratio, strain rate, chemical composition of environment, pH value, relative humidity were investigated. The results showed that all these factors had obvious influence on the crack initiation and propagation. Especially the dependence of CF life on pH value and frequency is quite different to the other traditional structural metallic materials. In order to interpret the results, the electrochemistry tests by polarization dynamic curve and electrochemical impedance spectroscopy were conducted with and without stress. The corrosion of magnesium alloys was also studied by in-situ observation in environmental scanning electron microscopy (ESEM). The corrosion rate changed with the wetting time during the initial corrosion process. The pre-charging of hydrogen caused crack initiated at $\beta$ phase, and with the increase of wetting time the crack propagated, implying that hydrogen produced by corrosion reaction participated in the process.

On the Implementation of Fuzzy Arithmetic for Prediction Model Equation of Corrosion Initiation

  • Do Jeong-Yun;Song Hun;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1045-1051
    • /
    • 2005
  • For critical structures and application, where a given reliability must be met, it is necessary to account for uncertainties and variability in material properties, structural parameters affecting the corrosion process, in addition to the statistical and decision uncertainties. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters and the fuzziness of the corrosion time is determined by the fuzzy arithmetic of interval arithmetic and extension principle

Estimation of Critical Chloride Threshold Value in Concrete by the Accelerated Corrosion Test

  • Vicho, Victor C.;Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.201-204
    • /
    • 2006
  • It should be noted that the critical chloride threshold level is not considered to be a unique value for all conditions. This value is dependent on concrete mix proportions, cement type and constituents, presence of admixtures, environmental factors, reinforcement surface conditions, and other factors. In this study, the accelerated corrosion test for reinforcing steel was conducted by electrochemical and cyclic wet and dry seawater method, respectively and during the test, corrosion monitoring by half-cell potential method was carried out to detect the time to initiation of corrosion for individual test specimen. For this purpose, lollypop and right hexahedron test specimens were made for 31%, 42%, and 50% of W/C, respectively, and then the accelerated corrosion test for reinforcing steel was executed. It was observed from the test that the time to initiation of corrosion was found to be different with the water-cement ratio and accelerated corrosion test method, respectively and the critical chloride threshold values were found to range from 0.91 to $1.47kg/m^3$.

  • PDF

Effects of Air Void at the Steel-Concrete Interface on the Corrosion Initiation of Reinforcing Steel in Concrete under Chloride Exposure

  • Nam Jin-Gak;Hartt William H.;Kim Kijoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.829-834
    • /
    • 2005
  • A series of reinforced G109 type specimens was fabricated and pended with a 15 weight percent NaCl solution. Mix design variables included 1) two cement alkalinities (equivalent alkalinities of 0.32 and 1.08), 2) w/c 0.50 and 3) two rebar surface conditions (as-received and wire-brushed). Potential and macro-cell current between top and bottom bars were monitored to determine corrosion initiation time. Once corrosion was initiated, the specimen was ultimately autopsied to perform visual inspection, and the procedure included determination of the number and size of air voids along the top half of the upper steel surface. This size determination was based upon a diameter measurement assuming the air voids to be half spheres or ellipse. The followings were reached based upon the visual inspection of G109 specimens that were autopsied to date. First, voids at the steel-concrete interface facilitated passive film breakdown and onset of localized corrosion. Based upon this, the initiation mechanism probably involved a concentration cell with contiguous concrete coated and bare steel serving as cathodes and anodes, respectively. Second, the corrosion tended to initiate at relatively large voids. Third, specimens with wire-brushed steel had a lower number of voids at the interface for both cement alkalinities, suggesting that air voids preferentially formed on the rough as-received surface compared to the smooth wire brushed one.

Time Dependent Evaluation of Corrosion Free Life of Concrete Tunnel Structures Based on the Reliability Theory (해저 콘크리트 구조물의 신뢰성 이론에 의한 시간 의존적 내구수명 평가)

  • Pack, Seung Woo;Jung, Min Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.142-154
    • /
    • 2011
  • This study predicted the probability of corrosion initiation of reinforced concrete tunnel boxes structures using the Monte Carlo Simulation. For the inner wall and outer wall in the tunnel boxes, exposed to airborne chloride ion and seawater directly respectively, statistical values of parameters like diffusion coefficient D, surface chloride content $C_s$, cover depth c, and the chloride threshold level $C_{lim}$ were examined from experiment or literature review. Their average values accounted for $3.77{\times}10^{-12}m^2/s$, 3.0% by weight of cement, 94.7mm and 45.5mm for outer wall and inner wall, respectively, and 0.69% by weight of cement for D, $C_s$, c, and $C_{lim}$, respectively. With these parametric values, the distribution of chloride contents at rebar with time and the probability of corrosion initiation of the tunnel boxes, inner wall and outer wall, was examined by considering time dependency of chloride transport. From the examination, the histogram of chloride contents at rebar is closer to a gamma distribution, and the mean value increases with time, while the coefficient of variance decreases with time. It was found that the probability of corrosion initiation and the time to corrosion were dependent on the time dependency of chloride transport. Time independent model predicted time to corrosion initiation of inner wall and outer wall as 8 and 12 years, respectively, while 178 and 283 years of time to corrosion was calculated by time dependent model for inner wall and outer wall, respectively. For time independent model, the probability of corrosion at 100 years of exposure for inner wall and outer wall was ranged 59.5 and 95.5%, respectively, while time dependent model indicated 2.9 and 0.2% of the probability corrosion, respectively. Finally, impact of $C_{lim}$, including values specified in current codes, on the probability of corrosion initiation and corrosion free life is discussed.

Chloride Penetration in Circular Concrete Columns

  • Morga, M.;Marano, G.C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.173-183
    • /
    • 2015
  • Most of the diffusion models of chloride ions in reinforced concrete (RC) elements proposed in literature are related to an isotropic homogeneous semi-infinite medium. This assumption reduces the mathematical complexity, but it is correct only for plane RC elements. This work proposes a comparison between the diffusion model of chloride ions in RC circular columns and in RC slab elements. The durability of RC cylindric elements estimated with the circular model instead of the plane model is shown to be shorter. Finally, a guideline is formulated to properly use the standard and more simple plane model instead of the circular one to estimate the time to corrosion initiation of cylindrical RC elements.

Reliability Analysis of Chloride Ion Penetration based on Level II Method for Marine Concrete Structure (해양 콘크리트 구조물에 대한 Level II 수준에서의 염소이온침투 신뢰성 해석)

  • Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.129-139
    • /
    • 2008
  • Due to uncertainty of numerous variables in durability model, a probalistic approach is increasing. Monte Carlo simulation (Level III method) is an easily accessible method, but requires a lot of repeated operations. This paper evaluated the effectiveness of First Order Second Moment method (Level II method), which is more convenient and time saving method than MCS, to predict the corrosion initiation in harbor concrete structure. Mean Value First Order Second Moment method (MV FOSM) and Advanced First Order Second Moment method (AFOSM) are applied to the error function solution of Fick's second law modeling chloride diffusion. Reliability index and failure probability based on MV FOSM and AFOSM are compared with the results by MCS. The comparison showed that AFOSM and MCS predict the similar reliability index and MV FOSM underestimates the probability of corrosion initiation by chloride attack. Also, the sensitivity of variables in durability model to corrosion initiation probability was evaluated on the basis of AFOSM. The results showed that AFOSM is a simple and efficient method to estimate the probability of corrosion initiation in harbor structures.

A Study on Corrosion Properties of Reinforced Concrete Structures in Subsurface Environment (지중 환경하에서의 철근콘크리트 구조물의 부식 특성 연구)

  • Kwon, Ki-jung;Jung, Haeryong;Park, Joo-Wan
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.79-85
    • /
    • 2016
  • A concrete silo plays an important role in subsurface low- and intermediate-level waste facilities (LILW) by limiting the release of radionuclides from the silo geosphere. However, due to several physical and chemical processes the performance of the concrete structure decreases over time and consequently the concrete loses its effectiveness as a barrier against groundwater inflow and the release of radionuclides. Although a number of processes are responsible for degradation of the silo concrete, it is determined that the main cause is corrosion of the reinforcing steel. Therefore, the time it takes for the silo concrete to fail is calculated based on two factors: the initiation time of corrosion, defined as the time it takes for chloride ions to penetrate through the concrete cover, and the propagation time of corrosion. This paper aims to estimate the time taken for concrete to fail in a LILW disposal facility. Based on the United States Department of Energy (DOE) approach, which indicates that concrete fails completely once 50% of the volume of the reinforcing steel corrodes, the corrosion propagation time is calculated to be 640 years, which is the time it takes for corrosion to penetrate 0.640 cm into the reinforcing steel. In addition to the corrosion propagation time, a diffusion equation is used to calculate the initiation time of corrosion, yielding a time of 1284 years, which post-dates the closure time of the LILW disposal facility if we also consider the 640 years of corrosion propagation. The electrochemical conditions of the passive rebar surface were modified using an acceleration method. This is a useful approach because it can reduce the test time significantly by accelerating the transport of chlorides. Using instrumental analysis, the physicochemical properties of corrosion products were determined, thereby confirming that corrosion occurred, although we did not observe significant cracks in, or expansion of, the concrete. These results are consistent with those of Smartet al., 2006 who reported that corrosion products are easily compressed, meaning that cracks cannot be discerned by eye. Therefore, it is worth noting that rebar corrosion does not strongly influence the hydraulic conductivity of the concrete.