• 제목/요약/키워드: time series clustering

검색결과 187건 처리시간 0.021초

기계학습 군집 알고리즘을 이용한 미세먼지 비선형성 완화방안 (Non-linearity Mitigation Method of Particulate Matter using Machine Learning Clustering Algorithms)

  • 이상권;조경우;오창헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.341-343
    • /
    • 2019
  • 고농도 미세먼지 발생이 증가함에 따라 미세먼지 예측에 많은 관심이 집중되고 있다. 미세먼지는 대기 중에 있는 직경 $10{\mu}m$ 이하의 밀입자 물질을 말하며, 온도, 상대습도, 풍속 등의 기상 변화에 영향을 받는다. 따라서 미세먼지 예측을 위해 기상 정보와의 상관관계를 분석하는 다양한 연구가 진행되었다. 하지만 미세먼지의 비선형적 시계열 분포는 예측 모델의 복잡도를 증가시키고, 부정확한 예측값을 초래할 수 있다. 본 연구에서는 기계학습의 군집 알고리즘 및 분류알고리즘을 이용하여 미세먼지의 비선형적 특성을 완화하고자 한다. 사용된 기계학습 알고리즘은 병합군집, 밀도기반군집이며, 각 알고리즘을 통한 군집결과를 비교, 분석하였다.

  • PDF

Topic Analysis of Scholarly Communication Research

  • Ji, Hyun;Cha, Mikyeong
    • Journal of Information Science Theory and Practice
    • /
    • 제9권2호
    • /
    • pp.47-65
    • /
    • 2021
  • This study aims to identify specific topics, trends, and structural characteristics of scholarly communication research, based on 1,435 articles published from 1970 to 2018 in the Scopus database through Latent Dirichlet Allocation topic modeling, serial analysis, and network analysis. Topic modeling, time series analysis, and network analysis were used to analyze specific topics, trends, and structures, respectively. The results were summarized into three sets as follows. First, the specific topics of scholarly communication research were nineteen in number, including research resource management and research data, and their research proportion is even. Second, as a result of the time series analysis, there are three upward trending topics: Topic 6: Open Access Publishing, Topic 7: Green Open Access, Topic 19: Informal Communication, and two downward trending topics: Topic 11: Researcher Network and Topic 12: Electronic Journal. Third, the network analysis results indicated that high mean profile association topics were related to the institution, and topics with high triangle betweenness centrality, such as Topic 14: Research Resource Management, shared the citation context. Also, through cluster analysis using parallel nearest neighbor clustering, six clusters connected with different concepts were identified.

RapidEye 위성영상의 시계열 NDVI 및 객체기반 분류를 이용한 북한 재령군의 논벼 재배지역 추출 기법 연구 (Extraction of paddy field in Jaeryeong, North Korea by object-oriented classification with RapidEye NDVI imagery)

  • 이상현;오윤경;박나영;이성학;최진용
    • 한국농공학회논문집
    • /
    • 제56권3호
    • /
    • pp.55-64
    • /
    • 2014
  • While utilizing high resolution satellite image for land use classification has been popularized, object-oriented classification has been adapted as an affordable classification method rather than conventional statistical classification. The aim of this study is to extract the paddy field area using object-oriented classification with time series NDVI from high-resolution satellite images, and the RapidEye satellite images of Jaeryung-gun in North Korea were used. For the implementation of object-oriented classification, creating objects by setting of scale and color factors was conducted, then 3 different land use categories including paddy field, forest and water bodies were extracted from the objects applying the variation of time-series NDVI. The unclassified objects which were not involved into the previous extraction classified into 6 categories using unsupervised classification by clustering analysis. Finally, the unsuitable paddy field area were assorted from the topographic factors such as elevation and slope. As the results, about 33.6 % of the total area (32313.1 ha) were classified to the paddy field (10847.9 ha) and 851.0 ha was classified to the unsuitable paddy field based on the topographic factors. The user accuracy of paddy field classification was calculated to 83.3 %, and among those, about 60.0 % of total paddy fields were classified from the time-series NDVI before the unsupervised classification. Other land covers were classified as to upland(5255.2 ha), forest (10961.0 ha), residential area and bare land (3309.6 ha), and lake and river (1784.4 ha) from this object-oriented classification.

제곱수익률 그래프와 TGARCH 모형을 이용한 비대칭 변동성 분석 (Squared Log-return and TGARCH Model : Asymmetric Volatility in Domestic Time Series)

  • 박진아;송유진;백지선;황선영;최문선
    • 응용통계연구
    • /
    • 제20권3호
    • /
    • pp.487-497
    • /
    • 2007
  • 일반적인 ARCH 형태의 모형들은 자산수익률의 급첨 (leptokurtic; heavy-tail) 성질과 변동성 집중 (volatility clustering) 현상 등의 특징을 잘 포착해내는 반면, 수익률의 부호에 따른 비대칭 레버리지 효과 (leverage effect)는 반영 할 수 없다는 단점을 가진다. 따라서 최근 금융 시계열 분야에서는 비대칭-조건부-이분산 시계열 모형에 대한 관심이 높아지고 있다. 본 연구에서는 국내 금융 시계열자료 (KOSPI, KOSDAQ, 환율, 채권, 주요종목의 주가)의 수익률 제곱을 그래프화 하여 비대칭 이분산성을 시각적으로 탐지하고 이를 바탕으로 비대 칭 TGARCH(1,1) 모형을 적합한 후 기존의 대칭 GARCH(1,1) 모형과 비교분석하고자 한다.

다중 시계열 패턴인식을 이용한 반도체 생산장치의 지능형 감시시스템 (An Intelligent Monitoring System of Semiconductor Processing Equipment using Multiple Time-Series Pattern Recognition)

  • 이중재;권오범;김계영
    • 정보처리학회논문지D
    • /
    • 제11D권3호
    • /
    • pp.709-716
    • /
    • 2004
  • 본 논문에서는 다중 시계열 패턴인식 사용하여 생산장치의 상태자료부터 공정결과를 예측하여 정상 또는 비정상을 판정하는 지능형 감시시스템에 관하여 기술한다. 제안하는 감시스템은 초기화, 학습 그리고 인식의 세 단계로 구성된다. 초기화 단계에서는 감시대상의 생산장치가 가지는 인사들 각각의 가중치와 각 인자들이 가지는 시계열 자료 중에서 학습과 인식에 유효단계를 설정한다. 학습단계에서는 LBG알고리즘을 사용하여 이 생산장치에 의하여 생성되고 수집된 패턴들을 군집화 한다. 각 패턴은 시계열 형태의 자료와 처리 완료 후 계측기에 의하여 측정된 ACI로 구성된다. 인식단계에서는 DTW를 사용하여 실시간으로 입력된 패턴과 군집화된 패턴들 사이의 대응을 수행하여 가장 잘 정합되는 패턴을 찾는다. 다음은 이 패턴이 가지는 ACI, 차 그리고 가중치들의 조합으로 예측된 ACI 값을 산출한다. 최종적으로 예측된 ACI가 정상으로 수용할 수 있는 값 범위에 없는지 여부를 결정한다. 제안하는 시스템의 성능평가를 위하여 식각장치로부터 획득된 자료를 대상으로 실험하였다. 실험결과에서는 학습횟수가 증가함에 따라 예측 ACI값과 실측ACI값 사이의 오차가 현저히 감소함을 볼 수 있다

자기구성 신경회로망을 이용한 면삭밀링에서의 공구파단검출 (Tool Breakage Detection in Face Milling Using a Self Organized Neural Network)

  • 고태조;조동우
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.1939-1951
    • /
    • 1994
  • This study introduces a new tool breakage detecting technology comprised of an unsupervised neural network combined with adaptive time series autoregressive(AR) model where parameters are estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(Recursive Least Square). Experiment indicates that AR parameters are good features for tool breakage, therefore it can be detected by tracking the evolution of the AR parameters during milling process. an ART 2(Adaptive Resonance Theory 2) neural network is used for clustering of tool states using these parameters and the network is capable of self organizing without supervised learning. This system operates successfully under the wide range of cutting conditions without a priori knowledge of the process, with fast monitoring time.

시차를 고려한 시계열 클러스터링 방법에 관한 연구 (A Study on Time Shifted Time Series Data Clustering)

  • 정재용;이주홍;송재원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.382-384
    • /
    • 2020
  • 데이터 클러스터링은 데이터의 숨겨진 패턴을 찾아낸다. 시계열 데이터에서 시차가 존재하는 데이터를 클러스터링하는 것은 데이터의 미래 패턴을 찾아내기 위해서 사용한다. 데이터 클러스터링을 수행하기 위한 여러 가지 Metric이 존재하지만, 시계열 데이터의 노이즈로 인해서 클러스터링을 수행하는 Metric을 설정하는데 제약이 존재한다. 본 논문은 기존 시계열 데이터가 가지고 있는 노이즈를 PIP 기법을 사용하여 제거하고, 노이즈가 없는 시계열 데이터를 클러스터링하기 위한 효율적인 새로운 Metric을 제안한다.

유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화 (Optimization of Fuzzy Systems by Means of GA and Weighting Factor)

  • 박병준;오성권;안태천;김현기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계 (The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index)

  • 오성권;윤기찬;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

Short-term Load Forecasting of Buildings based on Artificial Neural Network and Clustering Technique

  • Ngo, Minh-Duc;Yun, Sang-Yun;Choi, Joon-Ho;Ahn, Seon-Ju
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.672-679
    • /
    • 2018
  • Recently, microgrid (MG) has been proposed as one of the most critical solutions for various energy problems. For the optimal and economic operation of MGs, it is very important to forecast the load profile. However, it is not easy to predict the load accurately since the load in a MG is small and highly variable. In this paper, we propose an artificial neural network (ANN) based method to predict the energy use in campus buildings in short-term time series from one hour up to one week. The proposed method analyzes and extracts the features from the historical data of load and temperature to generate the prediction of future energy consumption in the building based on sparsified K-means. To evaluate the performance of the proposed approach, historical load data in hourly resolution collected from the campus buildings were used. The experimental results show that the proposed approach outperforms the conventional forecasting methods.