• Title/Summary/Keyword: time scale

Search Result 7,983, Processing Time 0.038 seconds

A Lightweight Real-Time Small IR Target Detection Algorithm to Reduce Scale-Invariant Computational Overhead (스케일 불변적인 연산량 감소를 위한 경량 실시간 소형 적외선 표적 검출 알고리즘)

  • Ban, Jong-Hee;Yoo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.231-238
    • /
    • 2017
  • Detecting small infrared targets from the low-SCR images at a long distance is very hard. The previous Local Contrast Method (LCM) algorithm based on the human visual system shows a superior performance of detecting small targets by a background suppression technique through local contrast measure. However, its slow processing speed due to the heavy multi-scale processing overhead is not suitable to a variety of real-time applications. This paper presents a lightweight real-time small target detection algorithm, called by the Improved Selective Local Contrast Method (ISLCM), to reduce the scale-invariant computational overhead. The proposed ISLCM applies the improved local contrast measure to the predicted selective region so that it may have a comparable detection performance as the previous LCM while guaranteeing low scale-invariant computational load by exploiting both adaptive scale estimation and small target feature feasibility. Experimental results show that the proposed algorithm can reduce its computational overhead considerably while maintaining its detection performance compared with the previous LCM.

A Large-scale Structural Mixing Model applied to Blowout of Turbulent Nonpremixed Jet Flames in a Cross Jet Flow (횡분류(流)(橫噴流)에서 난류 비예흔합 화염의 화염날림에 대한 거대 와(渦)구조 혼합 모텔 적용)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.133-140
    • /
    • 2002
  • This article presents an application of a large-scale structural mixing model(Broadwell et at. 1984) to the blowout of turbulent reacting cross flow jets. Experimental observations, therefore, aim to identify the existence of large-scale vortical structure exerting an important effect upon the flame stabilization. In the analysis of common stability curve, it is seen that the phenomenon of blowout are only related to the mixing time scale of the two flows. The most notable observation is that the blowout distance is traced at a fixed positions according to the velocity ratio at all times. Measurements of the lower blowout limits in the liftable flame are qualitatively in agreement with the blowout parameter $\xi$, proposed by Broadwell et al. Good agrement between the results calculated by a modified blowout parameter $\xi$'and the present experimental results confirms the important effect of large-scale structure in the stabilization feature of blowout.

Statistical Analysis of a Small Scale Time-Course Microarray Experiment (소규모 경시적 마이크로어레이 실험의 통계적 분석)

  • Lee, Keun-Young;Yang, Sang-Hwa;Kim, Byung-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.65-80
    • /
    • 2008
  • Small scale time-course microarray experiments are those which have a small number of time points. They comprise about 80 percent of all time-course microarray experiments conducted up to 2005. Several statistical methods for the small scale time-course microarray experiments have been proposed. In this paper we applied three methods, namely, QR method, maSigPro method and STEM, to a real time-course microarray experiment which had six time points. We compared the performance of these three methods based on a simulation study and concluded that STEM outperformed, in general, in terms of power when the FDR was set to be 5%.

An Expert System for the Real-Time Computer Control of the Large-Scale System (대규모 시스템의 실시간 컴퓨터 제어를 위한 전문가 시스템)

  • Ko, Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.781-788
    • /
    • 1999
  • In this paper, an expert system is proposed, which can be effectively applied to the large-scale systems with the diversity time constraints, the objectives and the unfixed system structure. The inference scheme of the expert system have the integrated structure composed of the intuitive inference module and logical inference module in order to support effectively the operating constraints of system. The intuitive inference module is designed using the pattern matching or pattern recognition method in order to search a same or similar pattern under the fixed system structure. On the other hand, the logical inference module is designed as the structure with the multiple inference mode based on the heuristic search method in order to determine the optimal or near optimal control strategies satisfing the time constraints for system events under the unfixed system structure, and in order to use as knowledge generator. Here, inference mode consists of the best-first, the local-minimum tree, the breadth-iterative, the limited search width/time method. Finally, the application results for large-scale distribution SCADA system proves that the inference scheme of the expert system is very effective for the large-scale system. The expert system is implemented in C language for the dynamic mamory allocation method, database interface, compatability.

  • PDF

Optimization of Multi-time Scale Loss Function Suitable for DNN-based Audio Coder (심층신경망 기반 오디오 부호화기를 위한 Multi-time Scale 손실함수의 최적화)

  • Shin, Seung-Min;Byun, Joon;Park, Young-Cheol;Beack, Seung-kwon;Sung, Jong-mo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1315-1317
    • /
    • 2022
  • 최근, 심층신경망 기반 오디오 부호화기가 활발히 연구되고 있다. 심층신경망 기반 오디오 부호화기는 기존의 전통적인 오디오 부호화기보다 구조적으로 간단하지만, 네트워크의 복잡도를 증가시키지 않고 인지적 성능향상을 기대하는 것은 어렵다. 이 문제를 해결하기 위하여 인간의 청각적 특성을 활용한 심리음향모델 기반 손실함수를 사용한 기법들이 소개되었다. 심리음향 모델 기반 손실함수를 사용한 오디오 부호화기는 양자화 잡음을 잘 제어하였지만, 여전히 지각적인 향상이 필요하다. 본 논문에서는 심층신경망 기반 오디오 부호화기를 위한 Multi-time Scale 손실함수의 지역 손실함수 윈도우 크기의 최적화 제안한다. Multi-time Scale 손실함수의 지역 손실함수 계산을 위한 윈도우 크기를 조절하며, 이를 통하여 오디오 부호화에 적합한 윈도우 사이즈를 결정한다. 실험을 통해 얻은 최적의 Multi-time Scale 손실함수를 사용하여 네트워크를 훈련하였고, 주관적 평가를 통해 기존의 심리음향모델 기반 손실함수보다 좋은 음성 품질을 보여주는 것을 확인하였다.

  • PDF

Nonparametric Test for Equality of Survival Distributions Using Probit Scale

  • Yun, Sang-Un;Park, Chung-Seon
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.1
    • /
    • pp.179-185
    • /
    • 1994
  • To test the equality of survival distributions in the presence of arbitrary right censorship, the choice of weights which are functions of the number of individuals at risk at the time of each death is very important in increasing the power of the test. In this paper a weight by probit scale is derived and the efficiencies relative to the other weight's are also investigated.

  • PDF

Linear quadratic regulators of two-time scale systems with eigenvalue placement in a vertical strip (수직스트립으로의 고유치배치에 의한 두시간스케일 시스템에서의 선형2차 동조기 구현)

  • 엄태호;김수중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.198-202
    • /
    • 1987
  • The regulator problem can be considered as some impulsive disturbance rejection one. In this point of view, the rate of decay is one of important factors for regulation and depends on how negative the real parts of the eigenvalues of closed-loop system. The algorithm that the closed-loop system has eigenvalues lying within a vertical. strip is useful for rapid disturbance rejection. This paper presents a design method for a linear quadratic regulator of two-time scale system with eigenvalues in a vertical strip by use of time-scale separation property.

  • PDF

A Large-scale Structural Mixing Model applied to Blowout of Turbulent Nonpremixed Jet Flames in a Cross air-flow

  • Lee, Kee-Man;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.163-173
    • /
    • 1997
  • This article presents an application of a large-scale structural mixing model (Broadwell et al. 1984) to the blowout of turbulent reacting jets discharging perpendicularly into an unconfined cross air-flow. In an analysis of a common stability curve, a plausible explanation can be made that the phenomenon of blowout is related only to the mixing time scale of the two flows. The most notable observation is that the blowout distance is traced at fixed positions at all times according to the velocity ratio R. Measurements of the lower blowout limits in the liftable flame agree qualitatively with the blowout parameter ${\varepsilon}$, proposed by Broadwell et al. Good agreement between the results calculated by a modified blowout parameter ${\varepsilon}^'$ and experimental results confirms the important effect of a large-scale structure in specifying the stabilization feature of blowouts.

  • PDF

Analysis of Turbulence Scales and Energy Spectrum for Engine Flows (엔진 난류의 크기척도 및 에너지 스펙트럼 해석)

  • Kang, Kern-Yong;Lee, Jin-Wook;Park, Seung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1307-1316
    • /
    • 1998
  • Engine turbulences obtained by LDV measurement near the compression TDC was analyzed by the classic turbulence theory. Turbulences were quantified by a cycle resolved analysis and processed to reveal integral time scale and length scale. Three different definitions were applied to obtain the turbulence time scales and then compared each others. The classic turbulence theory with the several assumptions for engine application proven to be very efficient for understanding engine turbulence in this study. It was found that the integral length scale is strongly affected and increased by tumble flow.

Characteristization of Spray Combustion and Turbulent Flame Structures in a Typical Diesel Engine Condition (디젤 엔진 운전 조건에서 분무 연소 과정과 난류 화염 구조 특성에 대한 해석)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.3
    • /
    • pp.29-36
    • /
    • 2009
  • Simulation is performed to analyze the characteristics of turbulent spray combustion in a diesel engine condition. An extended Conditional Moment Closure (CMC) model is employed to resolve coupling between chemistry and turbulence. Relevant time and length scales and dimensionless numbers are estimated at the tip and the mid spray region during spray development and combustion. The liquid volume fractions are small enough to support validity of droplets assumed as point sources in two-phase flow. The mean scalar dissipation rates (SDR) are lower than the extinction limit to show flame stability throughout the combustion period. The Kolmogorov scales remain relatively constant, while the integral scales increase with decay of turbulence. The chemical time scale decreases abruptly to a small value as ignition occurs with subsequent heat release. The Da and Ka show opposite trends due to variation in the chemical time scale. More work is in progress to identify the spray combustion regimes.

  • PDF