• 제목/요약/키워드: time reparametrization

검색결과 2건 처리시간 0.017초

TIME REPARAMETRIZATION OF PIECEWISE PYTHAGOREAN-HODOGRAPH $C^1$ HERMITE INTERPOLANTS

  • Kong, Jae-Hoon;Kim, Gwang-Il
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.381-393
    • /
    • 2012
  • In this paper, we show two ways of the time reparametrization of piecewise Pythagorean-hodograph $C^1$ Hermite interpolants. One is the time reparametrization with no shape change, and the other is that with shape change. We show that the first reparametrization does not depend on the boundary data and that it is uniquely determined by the size of parameter domain, up to the general cases. We empirically show that the second parametrization can cause the change of the shape of interpolant.

EQUIVALENT DEFINITIONS OF RESCALED EXPANSIVENESS

  • Wen, Xiao;Yu, Yining
    • 대한수학회지
    • /
    • 제55권3호
    • /
    • pp.593-604
    • /
    • 2018
  • Recently, a new version of expansiveness which is closely attached to some certain weak version of hyperbolicity was given for $C^1$ vector fields as following: a $C^1$ vector field X will be called rescaling expansive on a compact invariant set ${\Lambda}$ of X if for any ${\epsilon}$ > 0 there is ${\delta}$ > 0 such that, for any $x,\;y{\in}{\Lambda}$ and any time reparametrization ${\theta}:{\mathbb{R}}{\rightarrow}{\mathbb{R}}$, if $d({\varphi}_t(x),\,{\varphi}_{{\theta}(t)}(y)){\leq}{\delta}{\parallel}X({\varphi}_t(x)){\parallel}$ for all $t{\in}{\mathbb{R}}$, then ${\varphi}_{{\theta}(t)}(y){\in}{\varphi}_{(-{\epsilon},{\epsilon})}({\varphi}_t(x))$ for all $t{\in}{\mathbb{R}}$. In this paper, some equivalent definitions for rescaled expansiveness are given.