• Title/Summary/Keyword: time offset

Search Result 725, Processing Time 0.031 seconds

A Distributed Frequency Synchronization Technique for OFDMA-Based Mesh Networks Using Bio-Inspired Algorithm (Bio-inspired 알고리즘을 이용한 OFDMA 기반 메쉬 네트워크의 분산 주파수 동기화 기법)

  • Yoo, Hyun-Jong;Lee, Mi-Na;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.1022-1032
    • /
    • 2012
  • In OFDMA-based wireless mesh networks, synchronization of carrier frequencies among adjacent nodes is known to be difficult. In this paper, a distributed synchronization technique is proposed to solve the synchronization problem in OFDMA-based wireless mesh networks by using the bio-inspired algorithm. In the proposed approach, carrier frequencies of all nodes in a mesh network are converged into one frequency by locally synchronizing the frequencies of adjacent nodes. It may take a long time to be converged in some topologies since the convergence characteristic of carrier frequencies in a mesh network may vary depending on the size of the network and deployment of nodes. It is shown that fast frequency synchronization, not heavily depending on the topology, can be achieved through the proposed algorithm with an adjustable weight.

Guard Interval Extension for Individual Users in Uplink OFDMA Mobile Communication Systems (상향링크 OFDMA 이동통신 시스템에서의 개별 사용자의 보호구간 확장)

  • Rim, Min-Joong;Lim, Dae-Woon;Jeong, Byung-Jang;Noh, Tae-Gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.417-425
    • /
    • 2007
  • While the cyclic prefix lengths of downlink OFDMA(Orthogonal Frequency Division Multiple Access) systems are determined based on the maximum delay spreads encountered in cellular environments, the guard interval of uplink OFDMA systems should consider the timing offsets of uplink signals as well as the delay spread lengths. Especially in the cases of initial accesses, handovers, and considerable time elapsed without data transmissions between base and mobile stations in a large cell, uplink timing offsets can be large and a very long guard interval length may be required. In order to keep the small size of the cyclic prefix in uplink OFDMA systems, the systems require a method of extending the guard intervals for users with large timing offsets without affecting the cyclic prefix length of the system. This paper proposes a method extending the guard intervals of individual users in uplink OFDMA systems.

A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems (파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

Design of a CMOS Frequency Synthesizer for FRS Band (UHF FRS 대역 CMOS PLL 주파수 합성기 설계)

  • Lee, Jeung-Jin;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.941-947
    • /
    • 2017
  • This paper reports a fractional-N phase-locked-loop(PLL) frequency synthesizer that is implemented in a $0.35-{\mu}m$ standard CMOS process and generates a quadrature signal for an FRS terminal. The synthesizer consists of a voltage-controlled oscillator(VCO), a charge pump(CP), loop filter(LF), a phase frequency detector(PFD), and a frequency divider. The VCO has been designed with an LC resonant circuit to provide better phase noise and power characteristics, and the CP is designed to be able to adjust the pumping current according to the PFD output. The frequency divider has been designed by a 16-divider pre-scaler and fractional-N divider based on the third delta-sigma modulator($3^{rd}$ DSM). The LF is a third-order RC filter. The measured results show that the proposed device has a dynamic frequency range of 460~510 MHz and -3.86 dBm radio-frequency output power. The phase noise of the output signal is -94.8 dBc/Hz, and the lock-in time is $300{\mu}s$.

Evaluation of Pressure Effects on Blast Valves for Facility Protection of Underground Computing Center (지하 전산센터의 시설보호를 위한 방폭밸브에 미치는 폭압 평가)

  • Pang, Seung-Ki;Shin, Jin-Won;Kim, Wae-deuk
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • This paper presents two-step simulations to calculate the influence of blast-induced pressures on explosion-protection valves installed at the boundary between a protection facility and a tunnel entering the facility. The first step is to calculate the respective overpressure on the entrance and exit of the tunnel when an explosion occurs near the tunnel entrance and exit to approach the protection facility. Secondly, the blast pressures on the explosion-protection valves mounted to walls located near the tunnel inside approaching the protection facility are analyzed with a 0.1 ms time variation using the results obtained from the first-step calculations. The following conclusions could be derived as a results: (1) The analysis of the entrance tunnel scenario, P1, leads to the maximum overpressure of 47 kPa, approximately a half of the ambient pressure, at the inner entrance due to the effect of blast barrier. For the scenario, P2, the case not blocked by the barrier, the maximum overpressure is 628 kPa, which is relatively high, namely, 5.2 times the ambient pressure. (2) It is observed that the pressure for the entrance tunnel is effectively mitigated because the initial blast pressures are partially offset from each other according to the geometry of the entrance and a portion of the pressures is discharged to the outside.

QoS Improvement Scheme in Optical Burst Switching using Dynamic Burst length Adjustment (광 버스트 스위칭에서 버스트 길이의 동적 조절을 통한 QoS 향상방법)

  • Sanghoon Hong;Lee, Sungchang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.136-144
    • /
    • 2003
  • In this paper, we propose a scheme that can control the loss probability of low priority class bursts by dynamically adjusting the assembly threshold of low priority class. The key ideas is that the loss Probability of the longer burst increases as the load increases, thus reduced low priority class burst length decreases the loss priority at high traffic load. To achieve this aim, we first derive the relation among the loss probability, the assembly threshold, and the traffic load. In this paper we derive the relation by curve fitting on the simulation results. The ingress edge routers periodically or by event-driven receives the proper corresponding assembly threshold information from the core routers. This assembly threshold is calculated from the derived relation so that the required loss probability of the low priority class bursts in the network is satisfied. The simulation results show that the proposed scheme performs well to meet the loss probability target as expected.

Synchronization Method and Link Level Performance of DMB System A considering HPA Nonlineariry (HPA 비선형성을 고려한 DMB 시스템 A의 링크레벨 성능 및 동기화 기법)

  • Park SungHo;Cha Insuk;Chang KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6A
    • /
    • pp.488-498
    • /
    • 2005
  • The DAB(Digital Audio Broadcasting) service which is based on the Eureka-147 of Europe is developed to DMB(Digital Multimedia Broadcasting) service that is divided into Terrestrial DMB and Satellite DMB. The Satellite DMB is a new broadcasting service, which will service multi-channel multimedia broadcasting by the portable receiver or the vehicle receiver. In this paper, we consider that link level performance of satellite DMB system A which is based on the COFDM(Coded Orthogonal Division Multiplexing). It uses the OFDM method which is sensitive to nonlinearity, so we analyze the effect of the HPA(High Power Amplifier) nonlinearity. And then we define the appropriate back-off value by performing the link level simulation considering back-off effect. Also we consider the effect of frequency and time offset, and then confirm the overall link level performance by analyzing and verifying a suitable synchronization method for satellite DMB system A.

Fragmentation Management Method for 6LoWPAN (6LoWPAN에서 단편화 관리 기법)

  • Seo, Hyun-Gon;Han, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.130-138
    • /
    • 2009
  • 6LoWPAN is IPv6 packets transmission technology at Sensor network over the IEEE 802.15.4 Standard MAC and Physical layer. Adaptation layer between IP layer and MAC layer performs fragmentation and reassembly of packet for transmit IPv6 packets. RFC4944, IETF 6LoWPAN WG standard document define packet fragmentation and reassembly. In this paper, we propose the IRM(Immediate Retransmission Method) and SRM(Selective Retransmission Method) to manage packet fragmentation and reassembly at 6LoWPAN. Each time destination receives a fragmented packet, it sends Ack message to the source node on IRM. However, on SRM, the destination node receives all fragmented packet, it sends Ack message or Nak message to the source node. In this case, Nak message include the dropped packet number. To compare the performance of the proposed schemes, we develop a simulator using C++. The result of simulation shows the proposed schemes provider better performance than RFC4944 standard scheme.

Doppler Radar System for Noncontact Bio-signal measurement (비접촉 방식의 생체 신호 측정을 위한 도플러 레이더 시스템)

  • Shin, Jae-Yeon;Cho, Sung-Pil;Jang, Byung-Jun;Park, Ho-Dong;Lee, Yun-Soo;Lee, Kyoung-Joung
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.357-359
    • /
    • 2009
  • In this paper, the 2.4GHz doppler radar system consisting of the doppler radar module and a baseband module were designed to detect heartbeat and respiration signal without direct skin contact. A bio-radar system emits continuous RF signal of 2.4GHz toward human chest, and then detects the reflected signal so as to investigate cardiopulmonary activities. The heartbeat and respiration signals acquired from quadrature signal of the doppler radar system are applied to the pre-processing circuit, amplification circuit, and the offset circuit of the baseband module. ECG(electrocardiogram) and reference respiration signals are measured simultaneously to evaluate the doppler radar system. As a result, the respiration signal of doppler radar signal is detected to 1m without complex digital signal processing. The sensitivity and calculated from I/Q respiration signal were $98.29{\pm}1.79%$, $97.11{\pm}2.75%$, respectively, and positive predictivity were $98.11{\pm}1.45%$, $92.21{\pm}10.92%$, respectively. The sensitivity and positive predictivity calculated from phase and magnitude of the doppler radar were $95.17{\pm}5.33%$, $94.99{\pm}5.43%$, respectively. In this paper, we confirmed that noncontact real-time heartbeat and respiration detection using the doppler radar system has the possibility and limitation.

  • PDF

Speed Estimation by Applying Volume Weighted Average Methods in COSMOS (교통량 가중평균 방법을 적용한 COSMOS 속도 추정)

  • Lee Sang-soo;Lee Seung-hwan;Oh Young-Tae;Song Sung-ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.63-73
    • /
    • 2003
  • COSMOS(Cycle, Offset, Split Model for Seoul), a real-time traffic adaptive signal system. estimates queue lengths on each approach on the basis of arithmetic average spot speeds calculated on loop detectors installed at each of two adjacent lanes. In this paper, A new method, a traffic volume-weighted average method, was studied and compared with the existing arithmetic average method. It was found that the relationship between the ratio of volumes of two lanes and the difference of average speed of each lane has a linear form. With field data, The two methods were applied and the proposed method shows more stable and reasonable queue estimation results.

  • PDF