• Title/Summary/Keyword: time interval error

Search Result 257, Processing Time 0.026 seconds

Design of an adaptive tracking algorithm for a phased array radar (위상배열 레이다를 위한 적응 추적 알고리즘의 설계)

  • Son, Keon;Hong, Sun-Mog
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.541-547
    • /
    • 1992
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three-dimensional adaptive tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track update illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver detector. A detailed simulation is conducted to test the validity of our tracking algorithm for encounter geometries under various conditions of maneuver.

  • PDF

Ground Speed Control of a Direct Injection Sprayer

  • Koo, T.M.;Sumner, H.R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.500-510
    • /
    • 1996
  • A Direct injection -mixing total -flow -control sprayer was developed and evaluated . The system provided precise application rates and minimized operator exposure to chemicals as well as providing a possibility for recycling container so f unused chemicals that can causes environmental contamination. Chemicals were metered and injected proportionally to the diluent flow rate to provide constant concentrations. The main diluent flow was varied in response to changes in travel speed. Experimental variables of the sprayer were the control interval, the sensitivity of flow regulating valve, the tolerance of control object and the sensitivity of the injection pump system. The optimal performance of the flow control system was with an average response time of 8.5 sec at an absolute steady state of error of 0.067 L/min (0.8% of flow rate). The average response time of the injection rate was -0.53 sec and the coefficient of variation (CV) of concentration was 3.2%.

  • PDF

A Study for NHPP software Reliability Growth Model based on polynomial hazard function (다항 위험함수에 근거한 NHPP 소프트웨어 신뢰성장모형에 관한 연구)

  • Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.7-14
    • /
    • 2011
  • Infinite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rate per fault (hazard function). This infinite non-homogeneous Poisson process is model which reflects the possibility of introducing new faults when correcting or modifying the software. In this paper, polynomial hazard function have been proposed, which can efficiency application for software reliability. Algorithm for estimating the parameters used to maximum likelihood estimator and bisection method. Model selection based on mean square error and the coefficient of determination for the sake of efficient model were employed. In numerical example, log power time model of the existing model in this area and the polynomial hazard function model were compared using failure interval time. Because polynomial hazard function model is more efficient in terms of reliability, polynomial hazard function model as an alternative to the existing model also were able to confirm that can use in this area.

Multiple-symbol Nonlinear Continuous Phase Frequency Shift Keying (다중 심볼 비선형 연속 위상 주파수 천이 변조)

  • 주판유;송명규;홍성권;강성진;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.10
    • /
    • pp.2660-2669
    • /
    • 1996
  • In this paper, it is called nonlinear-symbol CPFSK(NCPFSK) which is modulated by the nonlinear function of information carrying phase function within all symbol interval produce time invariant trellis structure. In general, the bit error probability performance of CPFSK modultion scheme within given signal constellation is determined from the number of memory elementsof continuous phase encoder, i.e. number of state. In this paper the number of state of analyticall designed NCPFSK is time invariant. And the nonlinear symbol mapping function of the proposed moudlation produces the nonlinear symbol andthe phase state of the modulation for updating the phase function of NCPFSK. It si shown in this paper nonlinear symbol CPFSK with multiple TCM to make further improvements in d$^{2}$, and analyzed BER performance in AWGN channel envioronments.hannel envioronments.

  • PDF

Precipitation rate with optimal weighting method of remote sensed and rain gauge data

  • Oh, Hyun-Mi;Ha, Kyung-Ja;Bae, Deg-Hyo;Suh, Ae-Sook
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1171-1173
    • /
    • 2003
  • There are two datasets to estimate the area-mean and time-mean precipitation rate. For one, an array of surface rain gauges represents a series of rods that have to the time axis of the volume. And another data is that of a remote sensing make periodic overpasses at a fixed interval such as radar. The problem of optimally combining data from surface rain gauge data and remote sensed data is considered. In order to combining remote sensed data with Automatic Weather Station (AWS), we use optimal weighting method, which is similar to the method of [2]. They had suggested optimal weights that minimized value of the mean square error. In this paper, optimal weight is evaluated for the cases such as Changma, summer Monsoon, Typhoon and orographic rain.

  • PDF

Astronomical Instruments with Two Scales Drawn on Their Common Circumference of Rings in the Joseon Dynasty

  • Mihn, Byeong-Hee;Choi, Goeun;Lee, Yong Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.45-54
    • /
    • 2017
  • This study examines the scale unique instruments used for astronomical observation during the Joseon dynasty. The Small Simplified Armillary Sphere (小簡儀, So-ganui) and the Sun-and-Stars Time-Determining Instrument (日星定時儀, Ilseong-jeongsi-ui) are minimized astronomical instruments, which can be characterized, respectively, as an observational instrument and a clock, and were influenced by the Simplified Armilla (簡儀, Jianyi) of the Yuan dynasty. These two instruments were equipped with several rings, and the rings of one were similar both in size and in scale to those of the other. Using the classic method of drawing the scale on the circumference of a ring, we analyze the scales of the Small Simplified Armillary Sphere and the Sun-and-Stars Time-Determining Instrument. Like the scale feature of the Simplified Armilla, we find that these two instruments selected the specific circumference which can be drawn by two kinds of scales. If Joseon's astronomical instruments is applied by the dual scale drawing on one circumference, we suggest that 3.14 was used as the ratio of the circumference of circle, not 3 like China, when the ring's size was calculated in that time. From the size of Hundred-interval disk of the extant Simplified Sundial in Korea, we make a conclusion that the three rings' diameter of the Sun-and-Stars Time-Determining Instrument described in the Sejiong Sillok (世宗實錄, Veritable Records of the King Sejong) refers to that of the middle circle of every ring, not the outer circle. As analyzing the degree of 28 lunar lodges (lunar mansions) in the equator written by Chiljeongsan-naepyeon (七政算內篇, the Inner Volume of Calculation of the Motions of the Seven Celestial Determinants), we also obtain the result that the scale of the Celestial-circumference-degree in the Small Simplified Armillary Sphere was made with a scale error about 0.1 du in root mean square (RMS).

Field-Programmable Gate Array-based Time-to-Digital Converter using Pulse-train Input Method for Large Dynamic Range (시간 측정범위 향상을 위한 펄스 트레인 입력 방식의 field-programmable gate array 기반 시간-디지털 변환기)

  • Kim, Do-hyung;Lim, Han-sang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.137-143
    • /
    • 2015
  • A delay-line type time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA) is most widely owing due to its simple structure and high conversion rate. However, the delay-line type TDC suffers from nonlinearity error caused by the long delay-line because its time interval measurement range is determined by the length of the used delay line. In this study, a new TDC structure with a shorter delay line by taking a pulse train as an input is proposed for improved time accuracy and efficient use of resources. The proposed TDC utilizes a pulse-train with four transitions and a transition state detector that identifies the used transition among four transitions and prevents the meta-stable state without a synchronizer. With 72 delay cells, the measured resolution and maximum non-linearity were 20.53 ps, and 1.46 LSB, respectively, and the time interval measurement range was 5070 ps which was enhanced by approximately 343 % compared to the conventional delay-line type TDC.

An Improved Design Method of FIR Quadrature Mirror-Image Filter Banks (개선된 FIR QMF 뱅크의 설계 방법)

  • 조병모;김영수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.213-221
    • /
    • 2004
  • A new method for design of two-channel finite-impulse response(FIR) quadrature mirror-image filter(QMF) banks with low reconstruction delay using weighting function is proposed. The weighting function used in this paper is calculated from the previous updated filter coefficients vector which is adjusted from iteration to iteration in the design of QMF banks. In this paper, passband and stopband edge frequency are used in design of QMF banks with low delay characteristic in time domain instead of specific frequency interval where the artifacts occur in conventional design method. The investigation of specific frequency interval where artifacts occur can not be required by using passband and stopband edge frequency. Some comparisons of performance are made with other existing design method to demonstrate the proposed method for QMF bank design. and it was observed that the proposed method using the weighted function and passband and stopband edge frequency improves the peak reconstruction error by 0.001 [dB], the peak-to-peak passband ripple by 0.003[dB], SNR with a white noise by 7[dB] and SNR with a step input by 32[dB], but with a reduction of the computational efficiency because of updating the weighting function over the conventional method in Ref [11].

Verification on the Reduction Technique of Measurement Time of Total Radiated Power (TRP) by Using Effective Isotropic Radiated Power (EIRP) in 5G Frequency Band (유효등방복사전력(EIRP)을 활용한 5G 주파수 대역 총복사전력(TRP) 측정시간의 단축방안 검증)

  • Kim, Dong-Woo;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.835-840
    • /
    • 2020
  • In this paper, we described the verification results on method by using the computer simulation and practical experiment for reduction of total radiated power (TRP) measurement time consuming tens of hours. TRP measurements are used in the 5G band in order to exactly evaluate the wireless communication equipment, but it takes a long measurement time because of dense sampling interval. Moreover, if there are various beam forming scenarios, the total measurement time increases exponentially. Therefore, the world-wide research on reduction method of the TRP measurement time is intensively on going. The verified method in this paper is to calculate the TRP through effective isotropical radiated power (EIRP). At first, the relation of TRP and EIRP was investigated, and an antenna for testing was designed and constructed. And, the amount of error was analyzed through simulation and measurement. The analysed results showed that the derived TRP through EIRP has very small error. This method could be applied for TRP measurements of 5G wireless communication equipments.

A Time-of-arrival Estimation Technique for Ultrawide Band Indoor Wireless Localization System (초광대역 방식의 실내 무선 위치인식 시스템에 적합한 도착시간 추정 알고리즘)

  • Lee, Yong-Up
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.814-821
    • /
    • 2009
  • In an ultrawide band (UWB) indoor wireless localization, time of arrival (TOA) parameter estimation techniques have some difficulties in acquiring a reasonable TOA estimate because of the clustered multipath components overlapping or random time intervals mainly due to non line-of-sight (NLOS) environment. In order to solve that problem and achieve an excellent UWB indoor wireless localization, we propose a UWB signal model and a robust TOA parameter estimation technique that has little effect on the clustered problems unlike the conventional technique. Through simulation studies, the validity of the proposed model and the TOA estimation technique are examined. The performance of estimation error is also analyzed.