• Title/Summary/Keyword: time interpolation

Search Result 749, Processing Time 0.026 seconds

A 1-V 1.6-GS/s 5.58-ENOB CMOS Flash ADC using Time-Domain Comparator

  • Lee, Han-Yeol;Jeong, Dong-Gil;Hwang, Yu-Jeong;Lee, Hyun-Bae;Jang, Young-Chan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.695-702
    • /
    • 2015
  • A 1-V 1.6-GS/s 5.58-ENOB flash ADC with a high-speed time-domain comparator is proposed. The proposed time-domain comparator, which consumes low power, improves the comparison capability in high-speed operations and results in the removal of preamplifiers from the first-stage of the flash ADC. The time interpolation with two factors, implemented using the proposed time-domain comparator array and SR latch array, reduces the area and power consumption. The proposed flash ADC has been implemented using a 65-nm 1-poly 8-metal CMOS process with a 1-V supply voltage. The measured DNL and INL are 0.28 and 0.41 LSB, respectively. The SNDR is measured to be 35.37 dB at the Nyquist frequency. The FoM and chip area of the flash ADC are 0.38 pJ/c-s and $620{\times}340{\mu}m^2$, respectively.

Improved shape-based interpolation for three-dimensional reconstruction in gray-scale images (3차원 그레이-스케일 영상 재구성을 위한 개선된 형태-기반 보간)

  • Kim Hong, Helen;Park, Joo-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Using a series of medical tomograms, we can reconstruct internal organs or other objects of interest and generate 3-D images. It is generally accepted that the axial resolution determined by two sequential image slices is lower than the planar resolution in one image slices. Therefore, various methods of interpolation were developed for an accurate display of reconstructed images. In this paper, a new algorithm for 3-D reconstruction of the medical images such as MRI and X-ray CT is suggested. The algorithm is shape-based and utilizes parts of the gray-level information. We extend the conventional shape-based interpolation of the binary images to the gray-scale images using the shortest distance map. Using this new algorithm, We could reduce the execution time for interpolation while keeping similar high quality of the reconstructed images with reduced execution time and is applicable to the various medical tomograms.

  • PDF

Enhanced Image Magnification Using Edge Information (에지정보를 이용한 개선된 영상확대기법)

  • Je, Sung-Kwan;Cho, Jae-Hyun;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2343-2348
    • /
    • 2006
  • Image magnification is among the basic image processing operations. The most commonly used technique for image magnification are based on interpolation method(such as nearest neighbor, bilinear and cubic interpolation). However, the magnified images produced by the techniques that often appear a variety of undesirable image artifacts such as 'blocking' and 'blurring' or too takes the processing time into the several processing for image magnification. In this paper, we propose image magnification method which uses input image's sub-band information such as edge information to enhance the image magnification method. We use the whole image and not use the one's neighborhood pixels to detect the edge information of the image that isn't occurred the blocking phenomenon. And then we emphasized edge information to remove the blurring phenomenon which incited of edge information. Our method, which improves the performance of the traditional image magnification methods in the processing time, is presented. Experiment results show that the proposed method solves the drawbacks of the image magnification such as blocking and blurring phenomenon, and has a higher PSNR and Correlation than the traditional methods.

Improvement OCR Algorithm for Efficient Book Catalog RetrievalTechnology (효과적인 도서목록 검색을 위한 개선된 OCR알고리즘에 관한 연구)

  • HeWen, HeWen;Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.152-159
    • /
    • 2010
  • Existing character recognition algorithm recognize characters in simple conditional. It has the disadvantage that recognition rates often drop drastically when input document image has low quality, rotated text, various font or size text because of external noise or data loss. In this paper, proposes the optical character recognition algorithm which using bicubic interpolation method for the catalog retrieval when the input image has rotated text, blurred, various font and size. In this paper, applied optical character recognition algorithm consist of detection and recognition part. Detection part applied roberts and hausdorff distance algorithm for correct detection the catalog of book. Recognition part applied bicubic interpolation to interpolate data loss due to low quality, various font and size text. By the next time, applied rotation for the bicubic interpolation result image to slant proofreading. Experimental results show that proposal method can effectively improve recognition rate 6% and search-time 1.077s process result.

Effective Image Super-Resolution Algorithm Using Adaptive Weighted Interpolation and Discrete Wavelet Transform (적응적 가중치 보간법과 이산 웨이블릿 변환을 이용한 효율적인 초해상도 기법)

  • Lim, Jong Myeong;Yoo, Jisang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.3
    • /
    • pp.240-248
    • /
    • 2013
  • In this paper, we propose a super-resolution algorithm using an adaptive weighted interpolation(AWI) and discrete wavelet transform(DWT). In general, super-resolution algorithms for single-image, probability based operations have been used for searching high-frequency components. Consequently, the complexity of the algorithm is increased and it causes the increase of processing time. In the proposed algorithm, we first find high-frequency sub-bands by using DWT. Then we apply an AWI to the obtained high-frequency sub-bands to make them have the same size as the input image. Now, the interpolated high-frequency sub-bands and input image are properly combined and perform the inverse DWT. For the experiments, we use the down-sampled version of the original image($512{\times}512$) as a test image($256{\times}256$). Through experiment, we confirm the improved efficiency of the proposed algorithm comparing with interpolation algorithms and also save the processing time comparing with the probability based algorithms even with the similar performance.

Improvement of Direction-Oriented Interpolation for Deinterlacing (디인터레이싱을 위한 방향지향 보간법의 개선)

  • Park, Do-Young;Lee, Yeonkyung;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2209-2215
    • /
    • 2014
  • This paper presents, a deinterlacing method by improving the Direction-Oriented Interpolation (DOI) technique. The technique is considered to be a very strong tool for intrafield-based deinterlacing. However, DOI has some problems such as long processing time, wrong edge detection in periodic pattern. To remedy this problem, we replace the full search in DOI by a two-step search to reduce processing time and introduces two additional processes to improve image quality. In the proposed method, the spatial direction vectors (SDVs) misread data are reconsidered to prevent them utilizing in the next interpolation step, resulting in an accurate deinterlacing method. We conduct experiments with ISO experimental images to compare the proposed method with the existing methods including line evarage (LA), edge-based line averaging (ELA), DOI, selective deinterlacing algorithm (SDA). Experimental results show the proposed method gives better performance in objective and subjective quality than existing deinterlacing methods.

Time-Error Prediction of Rubidium Atomic Clock according to the Elapsed Time (루비듐 원자시계의 경과시간에 따른 시간오차 예측)

  • 김영범;정낙삼;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.439-445
    • /
    • 2001
  • In this paper, we propose a method that can minimize time-error when a commercial rubidium atomic clock is used as a portable reference clock. A linear interpolation method which was widely used is not based upon long-term stability, but our new method is considered to reduce time error. The comparison results between two method have shown that time error of our new approach considering with long-term stability is better than that of linear interpolation method within observation duration about one and half days. In addition, when the role of a rubidium atomic clock as a portable reference clock is completed within 12 hours, our new method can provide at most maximum time-error of 10 ns which is shorter than 15 ns in conventional method.

  • PDF

Real-time Calculation of Geoid Applicable to Embedded Systems (내장형 시스템에 적용 가능한 지오이드의 실시간 결정)

  • Kim, Hyun-seok;Park, Chan-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.374-381
    • /
    • 2020
  • In order to improve the vertical position accuracy, the advantages of GPS and barometric altimeter are combined and used, but in order to fuse the two sensors, the geoid altitude must be compensated. In this paper, we proposed a technique that can calculate geoid altitude in real time even in low-cost embedded systems applied to drones or autonomous vehicles. Since the reference EGM08 is determined by a polynomial of the 2160th order, real-time calculation is impossible in the embedded system. Therefore, by introducing a linear interpolation technique, the amount of calculation was increased, and the storage space was saved by 75% by using the integer geoid height as a grid point. The accuracy of the proposed technique was evaluated through simulation, and it was confirmed that the accuracy of the maximum error is -1.215 m even in the region where the geoid change is rapid.

Application of Objective Mapping to Surface Currents Observed by HF Radar off the Keum River Estuary (금강하구 연안에서 고주파 레이더로 관측된 표층해류에 대한 객관적 유속산출 적용)

  • Hwang, Jin-A;Lee, Sang-Ho;Choi, Byung-Joo;Kim, Chang-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.14-26
    • /
    • 2011
  • Surface currents were observed by high-frequency (HF) radars off the Keum River estuary from December 2008 to February 2009. The dataset of observed surface currents had data gaps due to the interference of electromagnetic waves and the deteriorating weather conditions. To fill the data gaps an optimal interpolation procedure was developed. The characteristics of spatial correlation in the surface currents off the Keum River estuary were investigated and the spatial data gaps were filled using the optimal interpolation. Then, the temporal and spatial distribution of the interpolated surface currents and the patterns of interpolation error were examined. The correlation coefficients between the surface currents in the coastal region were higher than 0.7 because tidal currents dominate the surface circulation. The sample data covariance matrix (C), spatially averaged covariance matrix with localization ($C^G_{sm}$) and covariance matrix fitted by an exponential function ($C_{ft}$) were used to interpolate the original dataset. The optimal interpolation filled the data gaps and suppressed the spurious data with spikes in the time series of surface current speed so that the variance of the interpolated time series was smaller than that of the original data. When the spatial data coverage was larger (smaller) than 70% of the region, the interpolation error produced by $C^G_{sm}$ ($C_{ft}$) was smaller compared with that by C.

Trace-based Interpolation Using Machine Learning for Irregularly Missing Seismic Data (불규칙한 빠짐을 포함한 탄성파 탐사 자료의 머신러닝을 이용한 트레이스 기반 내삽)

  • Zeu Yeeh;Jiho Park;Soon Jee Seol;Daeung Yoon;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.62-76
    • /
    • 2023
  • Recently, machine learning (ML) techniques have been actively applied for seismic trace interpolation. However, because most research is based on training-inference strategies that treat missing trace gather data as a 2D image with a blank area, a sufficient number of fully sampled data are required for training. This study proposes trace interpolation using ML, which uses only irregularly sampled field data, both in training and inference, by modifying the training-inference strategies of trace-based interpolation techniques. In this study, we describe a method for constructing networks that vary depending on the maximum number of consecutive gaps in seismic field data and the training method. To verify the applicability of the proposed method to field data, we applied our method to time-migrated seismic data acquired from the Vincent oilfield in the Exmouth Sub-basin area of Western Australia and compared the results with those of the conventional trace interpolation method. Both methods showed high interpolation performance, as confirmed by quantitative indicators, and the interpolation performance was uniformly good at all frequencies.