• 제목/요약/키워드: time harmonic

검색결과 852건 처리시간 0.025초

시간에 따라 변하는 고속철 부하의 고조파 측정, 평가 및 시뮬레이션에 관한 연구 (A Study on the Time-varying Harmonics Measurement, Assessment and Simulation of the High Speed Electric Train Loads)

  • 김경철;진성은;이일무;왕용필;곽노홍;전영수;박상호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.78-80
    • /
    • 2006
  • High speed electric trains have nonlinear loads including converters and inverters for the control synchronous motors. Harmonic field measurements have shown that the harmonic contents of a waveform varies with time. Direct application of the harmonic assessment to the snapshot measurements would result in ambiguous conclusions depending on which instant is sampled. A cumulative probabilistic approach is the most commonly used method to solve time varying harmonics. This paper provides an in depth analysis on harmonics field measurement of the high speed electric train loads, harmonics assessment by the international harmonic standards IEC 61000-3-6 and IEEE Std. 519-1992, and harmonics simulation using EDSA program for the case study.

  • PDF

Influence of polled direction on the stress distribution in piezoelectric materials

  • Ilhan, Nihat;Koc, Nagihan
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.955-971
    • /
    • 2015
  • In this paper, the influence of the polled direction of piezoelectric materials on the stress distribution is studied under time-harmonic dynamical load (time-harmonic Lamb's problem). The system considered in this study consists of piezoelectric covering layer and piezoelectric half-plane, and the harmonic dynamical load acts on the free face of the covering layer. The investigations are carried out by utilizing the exact equations of motion and relations of the linear theory of electro-elasticity. The plane-strain state is considered. It is assumed that the perfect contact conditions between the covering layer and half-plane are satisfied. The boundary value problems under consideration are solved by employing Fourier exponential transformation techniques with respect to coordinates directed along the interface line. Numerical results on the influence of the polled direction of the piezoelectric materials such as PZT-5A, PZT-5H, PZT-4 and PZT-7A on the normal stresses, shear stresses and electric potential acting on the interface plane are presented and discussed. As a result of the analyses, it is established that the polled directions of the piezoelectric materials play an important role on the values of the studied stresses and electric potential.

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings

  • Hosseini, Seyyed A.H.;Khosravi, Farshad
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.25-36
    • /
    • 2020
  • Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.

Real time Implementation of SHE PWM in Single Phase Matrix Converter using Linearization Method

  • Karuvelam, P. Subha;Rajaram, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1682-1691
    • /
    • 2015
  • In this paper, a real time implementation of selective harmonic elimination pulse width modulation (SHEPWM) using Real Coded Genetic Algorithm (RGA), Particle Swarm Optimization technique (PSO) and a new technique known as Linearization Method (LM) for Single Phase Matrix Converter (SPMC) is designed and discussed. In the proposed technique, the switching frequency is fixed and the optimum switching angles are obtained using simple mathematical calculations. A MATLAB simulation was carried out, and FFT analysis of the simulated output voltage waveform confirms the effectiveness of the proposed method. An experimental setup was also developed, and the switching angles and firing pulses are generated using Field Programmable Gate Array (FPGA) processor. The proposed method proves that it is much applicable in the industrial applications by virtue of its suitability in real time applications.

A Study on the Harmonics Effect of SVC in Electric Arc Furnace Loads

  • Kim, Kyung-Chul;Jin, Seong-Eun
    • 조명전기설비학회논문지
    • /
    • 제20권9호
    • /
    • pp.54-60
    • /
    • 2006
  • Large steel industries have time-varying nonlinear loads such as electric arc furnaces. These nonlinear loads generate harmonic currents and create distortions on the sinusoidal voltage of the power system. The main objective of the static var compensator is to maintain the rms voltage at the point of common coupling within the limit. In this research, harmonic mitigation studies were conducted with and without the SVC, and time-varying harmonics were evaluated according to the international harmonic standards (IEC 61000-3-6 and IEEE Std. 519) using a cumulative probabilistic approach.

중첩 격자 기법이 적용된 대각 내재적 조화균형법을 이용한 헬리콥터 로터 블레이드의 비정상 공력 해석 (UNSTEADY AERODYNAMIC ANALYSIS OF HELICOPTER ROTOR BLADES USING DIAGONAL IMPLICIT HARMONIC BALANCE METHOD)

  • 임동균;최성임;김유진;권장혁;박수형
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.70-77
    • /
    • 2012
  • In this paper, diagonal implicit harmonic balance method with overset grid technique is applied to analyze helicopter rotor blade flow in hover and forward flight condition. The chimera grid need interpolation time with sub-grid and background grid in moving problem such as forward flight on every time step. Present method is available enough to reduce the grid module interpolation time. In order to demonstrate present method, Caradonna & Tung's and AH-1G rotor blades are used and the results are compared to other researchers' result and experimental data.

Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain

  • Lata, Parveen;Kaur, Harpreet
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.369-381
    • /
    • 2019
  • The objective of this paper is to study the two dimensional deformation in transversely isotropic thermoelastic medium without energy dissipation due to time harmonic sources using new modified couple stress theory, a continuum theory capable to predict the size effects at micro/nano scale. The couple stress constitutive relationships have been introduced for transversely isotropic thermoelastic medium, in which the curvature tensor is asymmetric and the couple stress moment tensor is symmetric. Fourier transform technique is applied to obtain the solutions of the governing equations. Assuming the deformation to be harmonically time-dependent, the transformed solution is obtained in the frequency domain. The application of a time harmonic concentrated and distributed sources have been considered to show the utility of the solution obtained. The displacement components, stress components, temperature change and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effects of angular frequency are depicted graphically on the resulted quantities.

Nonlinear Time Reversal Focusing and Detection of Fatigue Crack

  • Jeong, Hyun-Jo;Barnard, Dan
    • 비파괴검사학회지
    • /
    • 제32권4호
    • /
    • pp.355-361
    • /
    • 2012
  • This paper presents an experimental study on the detection and location of nonlinear scattering source due to the presence of fatigue crack in a laboratory specimen. The proposed technique is based on a combination of nonlinear elastic wave spectroscopy(NEWS) and time reversal(TR) focusing approach. In order to focus on the nonlinear scattering position due to the fatigue crack, we employed only one transmitting transducer and one receiving transducer, taking advantage of long duration of reception signal that includes multiple linear scattering such as mode conversion and boundary reflections. NEWS technique was then used as a pre-treatment of TR for spatial focusing of reemitted second harmonic signal. The robustness of this approach was demonstrated on a cracked specimen and the nonlinear TR focusing behavior is observed on the crack interface from which the second harmonic signal was originated.

플로케이론을 이용한 일반회전체의 복소 모드해석 (Complex Modal Analysis of General Rotor System by Using Floquet Theory)

  • 한동주;이종원
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1321-1328
    • /
    • 2005
  • Based upon the Floquet theory, the complex modal solution for general rotor systems with periodically time-varying parameters is newly derived. The complete modal response can be obtained from the orthonormality condition between the time-variant eigenvectors and the corresponding adjoint vectors. The harmonic solutions such as the response and directional special a patterns are then derived in terms of harmonic modes whose coefficients are obtained from the modal analysis. The stability analysis by the Floquet's transition matrix and the eigen-analysis is also performed.

Time harmonic interactions in non local thermoelastic solid with two temperatures

  • Lata, Parveen;Singh, Sukhveer
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.341-350
    • /
    • 2020
  • The present investigation is concerned with two dimensional deformation in a non local thermoelastic solid with two temperatures due to time harmonic sources. The nonlocal thermoelastic solid is homogeneous with the effect of two temperature parameters. Fourier transforms are used to solve the problem. The bounding surface is subjected to concentrated and distributed sources. The analytical expressions of displacement, stress components and conductive temperature are obtained in the transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerical simulated results are depicted graphically to show the effect of nonlocal parameter and frequency on the components of displacements, stresses and conductive temperature. Some special cases are also deduced from the present investigation.