• 제목/요약/키워드: time element

Search Result 5,452, Processing Time 0.03 seconds

Advanced Design Environmental With Adaptive And Knowledge-Based Finite Elements

  • Haghighi, Kamyar;Jang, Eun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1222-1229
    • /
    • 1993
  • An advanced design environment , which is based on adaptive and knowledge -based finite elements (INTELMESH), has been developed. Unlike other approaches, INTEMMESH incorporates the information about the object geometry as well as the boundary and loading conditions to generate an ${\alpha}$-priori finite element mesh which is more refined around the critical regions of the problem domain. INTEMMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading . It intelligently identifies the critical regions/points in the problem domain and utilize the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTEMMESH generates well-shaped triangular elements by applying trangulartion and Laplacian smoothing procedures. The adaptive analysis involves the intial finite elements analyze and an efficient ${\alpha}$-posteriori error analysis involves the initial finite element anal sis and an efficient ${\alpha}$-posteriori error analysis and estimation . Once a problem is defined , the system automatically builds a finite element model and analyzes the problem though automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an ${\alpha}$-priori, and near optimum mesh of the object , converges to the desired accuracy in less time and at less cost. Such an advanced design/analysis environment will provide the capability for rapid product development and reducing the design cycle time and cost.

  • PDF

Geometrically non-linear transient C° finite element analysis of composite and sandwich plates with a refined theory

  • Kommineni, J.R.;Kant, T.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.87-102
    • /
    • 1993
  • A $C^{\circ}$ continuous finite element formulation of a higher order displacement theory is presented for predicting linear and geometrically non-linear in the sense of von Karman transient responses of composite and sandwich plates. The displacement model accounts for non-linear cubic variation of tangential displacement components through the thickness of the laminate and the theory requires no shear correction coefficients. In the time domain, the explicit central difference integrator is used in conjunction with the special mass matrix diagonalization scheme which conserves the total mass of the element and included effects due to rotary inertia terms. The parametric effects of the time step, finite element mesh, lamination scheme and orthotropy on the linear and geometrically non-linear responses are investigated. Numerical results for central transverse deflection, stresses and stress resultants are presented for square/rectangular composite and sandwich plates under various boundary conditions and loadings and these are compared with the results from other sources. Some new results are also tabulated for future reference.

Nonlinear Analysis of Prestressed Concrete Box Girder Bridges Using Macro Element (매크로요소를 이용한 프리스트레스트 콘크리트 박스거더 교량의 비선형 해석)

  • Oh, Byung-Hwan;Lee, Myung-Kue
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.77-87
    • /
    • 1999
  • The conventional design of prestressed concrete box girder bridges has been based on the linear elastic analyses using simplified geometric models. To overcome the restriction involved in the simplifications, a macro element for the rational analysis of prestressed concrete box girder bridges with variable cross sections is incorporated in the present analysis. Through the adoption of nonlinear material models, the behaviour of prestressed box bridges up to ultimate loading stage can be examined. The time dependent material models included in the present macro element code enable to predict the long term behaviour of prestressed concrete box girder bridges. The proposed macro element code with the nonlinear material models and time dependent routines can be efficiently used for the realistic analysis of prestressed concrete box girder bridges with arbitrary shapes.

A Comparative Study on Eigen-Wear Analysis and Numerical Analysis using Algorithm for Adaptive Meshing (마모해석을 위한 고유치해석과 Adaptive Meshing 알고리듬을 이용한 수치해석 비교)

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.262-266
    • /
    • 2020
  • Herein, we present a numerical investigation of wear analysis of sliding systems with a constant speed subjected to Archard's wear law. For this investigation, we compared two methods: eigen-wear analysis and adaptive meshing technique. The eigen-wear analysis is advantageous to predict the evolution of contact pressure due to wear using the initial contact pressure and contact stiffness. The adaptive meshing technique in finite element analysis is employed to obtain transient wear behavior, which needs significant computational resources. From the eigen-wear analysis, we can determine the appropriate element size required for finite element analysis and the time increment required for wear evolution by a dimensionless variable above a certain value. Since the prediction of wear depends on the maximum contact pressure, the finite element model should have a reasonable representation of the maximum contact pressure. The maximum contact pressure and wear amount according to this dimensionless variable shows that the number of fine meshes in the contact area contributes more to the accuracy of the wear analysis, and the time increment is less sensitive when the number of contact nodes is significantly larger. The results derived from a two-dimensional wear model can be applied to a three-dimensional wear model.

Viscoplastic Solution of Thick Walled Cylinder Considering Axial Constraint (축방향 경계 조건을 고려한 두꺼운 실린더의 점소성 응력해)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1555-1561
    • /
    • 2003
  • Finite element analysis using modern constitutive equation is one of the most general tools to simulate the deformation behavior and to predict the life of the structure. Constitutive equation becomes complicated so as to predict the material behavior more accurately than the classical models. Because of the complexity of constitutive model, numerical treatment becomes so difficult that the calculation should be verified carefully. One-element tests, simple tension or simple shear, are usually used to verify the accuracy of finite element analysis using complicated constitutive model. Since this test is mainly focused on the time integration scheme, it is also necessary to verify the equilibrium iteration using material stiffness matrix and to compare FE results with solution of structures. In this investigation, viscoplastic solution of thick walled cylinder was derived considering axial constraints and was compared with the finite element analysis. All the numerical solutions showed a good coincidence with FE results. This numerical solution can be used as a verification tool for newly developed FE code with complicated constitutive model.

Wheel-Rail Contact Analysis Considering Axle Deformation Using a One-Dimensional Beam Element (1차원 빔요소를 활용한 차축 변형고려 차륜-레일 접촉해석)

  • Choi, Ha-Young;Lee, Dong-Hyung;Kwon, Seok-Jin;Seo, Jeong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.139-145
    • /
    • 2017
  • It is necessary to analyze the exact contact position and contact stress of the wheel-rail in order to predict damage to the wheel and rail. This study presents a wheel-rail contact analysis model that considers the deformation of the axle. When a wheel-rail contact analysis is performed using a full three-dimensional model of the wheelset and rail, the analytical model becomes very inefficient due to the increase in analysis time and cost. Therefore, modeling the element-coupling model of the wheel and rail as a three-dimensional element and the axle as a one-dimensional element is proposed. The wheel-rail contact characteristics in the proposed analysis model for straight and curved lines were analyzed and compared with the conventional three-dimensional analysis model. Considering the accuracy of the analysis results and time, the result shows that the proposed analytical model has almost the same accuracy as a full three-dimensional model, but the computational effort is significantly reduced.

Trace Element in the Indian Ocean: Current Research Trends and Future Needs (인도양에서 미량원소 연구 동향 및 향후 연구 방향)

  • Kim, Intae
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.335-352
    • /
    • 2021
  • Trace elements in the ocean have been known as essential micronutrients for the primary production of phytoplankton and the growth of marine organisms. The GEOTRACES program beginning in the mid-2000 provided a new understanding of the distribution, origin and behavior of trace elements in the ocean, together with the establishment of both clean seawater sampling and trace element analysis techniques. The Indian Ocean, one of the major oceans, is relatively the least explored area, despite playing an important role in global climate variability. Although trace element observations have recently been conducted in the Indian Ocean by Japanese-and Indian scientists, relatively not much study has been done compared to the Atlantic, Pacific and Polar Regions. Recently, together with the launch of R/V Isabu, a 5,000-ton grade large- and comprehensive research vessel, the observations of trace elements has been conducted in the Indian Ocean for the first time in Korea since 2018. In this paper, we introduce the key results of currently conducted GEOTRACES expedition in the Indian Ocean to present future trace element research directions in the Indian Ocean, and also reviewed the preliminary results in the Indian Ocean studies from Korea. In the 2020s, new Indian Ocean GEOTRACES projects are planned around European countries, and it is time for Korea to prepare for the next phase of the trace element study in the Indian Ocean in line with these international trends.

Sensitivity Analysis of Dynamic Response by Change in Excitation Force and Cross-sectional Shape for Damped Vibration of Cantilever Beam (가진력과 단면형상 변화에 따른 외팔보 감쇠 진동의 민감도 해석)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.11-17
    • /
    • 2021
  • This paper describes the time rate of change of dynamic response of a cantilever beam inserted with a damping element, such as bonding, which is excited under a general force at various locations. A sensitivity analysis was performed in a finite element model to show that two types of second-order algebraic governing equations were used to predict the rate of change of dynamic displacement: one is related to the modal coordinate linked to a physical coordinate, and the other to the design parameter of the time rate of change of displacement. The sensitivity differential equation formulation includes more complicated terms compared with that of the undamped cantilever beam. The sensitivities of the dynamic response were observed by changing the location of the excitation force, displacement extraction, and cross-sectional area of the beam. The analytical results obtained by this suggested theory showed a relatively good agreement when compared with those obtained using the commercial finite element program. The suggested analysis procedure enables the prediction of the response sensitivity for any finite element model of the dynamic system.

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong;Vu, Quang-Viet;Truong, Viet-Hung;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.497-521
    • /
    • 2021
  • In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.

Suggestion of Model Change Work Improvement by REBA and Therblig

  • Lee, Sung-Koon;Park, Peom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.757-764
    • /
    • 2011
  • Objective: The aim of this study was to provide a method to improve the compliance and reduce the time by reducing the workload during the model change work. Background: The enterprises are constructing the small quantity batch production system by increasing the number of model change and reducing model-changing. However, the compliance is low because the work is strenuous and high skills are needed, so the system management is facing with many difficulties. Method: After classifying the model change work according to the purposes(preparation, change and adjustment) with the target of mascara filling machine, element tasks time were measured and the motion analysis(therblig symbol) and REBA analysis were performed. The study incorporated 3 independent variables as the number of motion, REBA score and the element time. The dependent variable is the type of element work as preparation, change and adjustment. The statistical test was performed by one-way ANOVA(${\alpha}$ < 0.05). Results: For the preparation, the number of motions appeared in the order of Use(U), Transport Loaded(TL), and Position(P). The order appeared in change is Use(U), Release Load(RL), and Grasp (G). The adjustment appeared in the order of Position(P) and Use(U). The results of average motion time as the element work times divided by the number of motion appeared in the order of adjustment(1.85sec/motion), preparation(1.11sec/motion), and change(0.62sec/motion). The results of REBA showed that the average risk level of change and adjustment were medium, but 53.1% of change and 42.9% of adjustment were evaluated as high. Conclusion: Reducing the avoidance and improving the compliance of work could be expected if the job autonomy were improved by improving the working postures with high risk level. Application: It is expected to solve the problem of reducing the time of model change work in the small quantity batch production system. The future work is to carry out the improvement directions found in the results and compare the results after improvement.