• Title/Summary/Keyword: time distribution of rainfall

Search Result 258, Processing Time 0.02 seconds

Spatial Distribution and Casual Causes of Shallow Landslides in Jinbu Area of Korea

  • Park, Jin Woo;Choi, Byoung Koo;Kim, Myung Hwan;Cha, Du Song
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.130-135
    • /
    • 2017
  • In temperate monsoon regions, extensive shallow landslides triggered by heavy rainfall are recurrent phenomena in mountainous areas. 1,357 landslides over Jinbu area, Korea that totaled 127 km2 were identified from aerial photographs and field survey. We examined characteristics of rainfall-induced shallow landslides and casual factors affecting landslide distribution with respect to topographic and forest settings, and land use. Most landslides occurred in the study area were the results of a complex combination of precondition, preparatory factors and triggering factors. Cumulative rainfall and high intensity rainfall during short period of time made the study area very sensitive to landslides and played as catalysts to enable other factors including topographic and forest settings, and land use to act more effectively. In addition, some landslides at lower elevation involved channel incision or bank erosion influenced by land use changes such as deforestation and intensification of agriculture surrounding riparian forests or hillslopes. The results suggest that most of landslide were triggered by heavy rainstorms while topographic, forest settings, and land use affected landslide distribution occurred in the study area.

Inundation Analysis of Agricultural Basin Considering Agricultural Drainage Hydrological Plan and Critical Rainfall Duration (농지배수 수문설계 기준과 임계지속기간을 고려한 농업 소유역 침수분석)

  • Kim, Kwihoon;Jun, Sang-Min;Kang, Moon Seong;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.25-32
    • /
    • 2023
  • KDS (Korean Design Standard) for agricultural drainage is a planning standard that helps determine the appropriate capacity and type of drainage facilities. The objective of this study was to analyze the inundation of the agricultural basin considering the current design standard and the critical rainfall duration. This study used the rainfall durations of 1-48 hour, and the time distribution method with the Chicago and the modified Huff model. For the runoff model, the NRCS (Natural Resources Conservation Service) unit hydrograph method was applied, and the inundation depth and duration were analyzed using area-elevation data. From the inundation analysis using the modified Huff method with different rainfall durations, 4 hours showed the largest peak discharge, and 11 hours showed the largest inundation depth. From the comparison analysis with the current method (Chicago method with a duration of 48 hours) and the modified Huff method applying critical rainfall duration, the current method showed less peak discharge and lower inundation depth compared to the modified Huff method. From the simulation of changing values of drainage rate, the duration of 11 hours showed larger inundation depth and duration compared to the duration of 4 hours. Accordingly, the modified Huff method with the critical rainfall duration would likely be a safer design than the current method. Also, a process of choosing a design hydrograph considering the inundation depth and duration is needed to apply the critical rainfall duration. This study is expected to be helpful for the theoretical basis of the agricultural drainage design standards.

Probabilistic Failure-time Analysis of Soil Slope under Rainfall Infiltration by Numerical Analysis (수치해석에 의한 강우 침투 시 사면 파괴시간의 확률론적 해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.45-58
    • /
    • 2019
  • In this study, a stochastic analysis procedure based on numerical analysis was proposed to evaluate a kind of intensity-duration rainfall threshold for the initiation of slope failure due to rainfall infiltration. Fragility curves were generated as a function of rainfall intensity-duration from the results of probabilistic slope stability analysis by MCS considering the uncertainty of the soil shear strength, reflecting the results of infiltration analysis of rainfall over time. In the probabilistic analysis, slope stability analyses combined with the infiltration analysis of rainfall were performed to calculate the limit state function. Using the derived fragility curves, a chart showing the relationship between rainfall intensity and slope failure-time was developed. It is based on a probabilistic analysis considering the uncertainty of the soil properties. The proposed probabilistic failure distribution analysis could be beneficial for analyzing the time-dependent failure process of soil slopes due to rainfall infiltration, and for predicting when the slope failure should occur.

Analysis of Groundwater Recharge Characteristics Using Relationship between Rainfall and Groundwater Level (강우량과 지하 수위를 이용한 지하수 함양특성 분석)

  • Lee, Dong-Ryul;Gu, Ho-Bon
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • A dynamic model, which combined time series model with distributed-lag model, is applied to understand the relationship between rainfall and groundwater level. In the model, rainfall with distribution lags and past groundwater level as a dependent variables were used to estimate present groundwater level. The distribution of the lagged rainfall effects for groundwater levels was modeled by Almon polynomials. The model was applied to Banglim and Tanbu groundwater stations in Pyungchang river and Bocheong stream watershed which are representative basins for International Hydrological Program (IHP). The dynamic model represents observed groundwater levels very well and can be used to predict the levels. The model parameters reflect hydraulic characteristics of aquifer. In addition, from the parameters it appears that the increase in groundwater level due to rainfall takes place significantly within first two days of the rainfall event. The rainfall of the order of 18mm/day and 30mm/day at Banglim and Tanbu, respectively, had no significant effect on the groundwater levels.

  • PDF

Sediment Yield by Instantaneous Unit Sediment Graph

  • Lee, Yeong-Hwa
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1998
  • An instantaneous unit sediment graph (IUSG) model is investigated for prediction of sediment yield from an upland watershed in Northwestern Mississippi. Sediment yields are predicted by convolving source runoff with an IUSG. The IUSG is the distribution of sediment from an instantaneous burst of rainfall producing one unit of runoff. The IUSG, defined as a product of the sediment concentration distribution (SCD) and the instantaneous unit hydrograph (IUH), is known to depend on the characteristics of the effective rainfall. The IUH is derived by the Nash model for each event. The SCD is assumed to be an exponential function for each event and its parameters were correlated with the effective rainfall characteristics. A sediment routing function, based on travel time and sediment particle size, is used to predict the SCD.

  • PDF

Sediment Yield by Instantaneous Unit Sediment Graph

  • Yeong Hwa Lee
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1993
  • An instantaneous unit sediment graph (IUSG) model is investigated for prediction of sediment yield from an upland watershed In Northwestern Mississippi. Sediment yields are predicted by convolving source runoff with an IUSG. The IUSG is the distribution of sediment from an instantaneous burst of rainfall producing one unit of runoff. The IUSG, defined as a product of the sediment concentration distribution (SCD) and the instantaneous unit hydrograph (IUH), is known to depend on the characteristics of the effective rainfall. The IUH is derived by the Nash model for each event. The SCD is assumed to be an exponential function for each event and its parameters were correlated with the effective rainfall characteristics. A sediment routing function, based on travel time and sediment particle size, is used to predict the SCD.

  • PDF

A Study on Hydrologic Analysis and Some Effects of Urbanization on Design Flow of Urban Storm Drainage Systems (1) (도시 하수도망의 수문학적인 평가와 설계확률유량의 점대화 성향에 관한 연구(제1보))

  • 강관원;서병하;윤용남
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 1981
  • The design flow of the urban strom drainage systems has been assessed largely on a basis of empirical relations between rainfall and runoff, and the rational formula has been widely used for the cities in our country. In order to estimate it more accurately, the urban runoff simulation model based on the RRl method has been developed and applied to the sample basin in this study. The rainfall hyetograph of the design stromfor the design flow has been obtained by the determination of the total rainfall and the temporal distributions of that rainfall. The total rainfall has been assessed from the empirical formula of rainfall intensity and the temporal distribution of that rainfall determined on the basis of Huff's method from the historical rainfall data of the basin. The virtual inflow hydrograph to each inlet of the basin has been constructed by computing the series of discharges in each time increment, using design strom hyetograph and time-area diagram. The actual runoff hydrograph at the basin outlet has been computed from the virtual inflow hydrographs by developing a relations between discharge and storage for the watershed. The discharge data for verification of the simulated runoff hydrograph are not available in the sample basin and so the sensitivity analysis of the simulation model has not been possible. The peak discharge for the design of drainage systems has been estimated from the computed runoff hydrograph at the basin outlet and compared to thatl obtained form the rational formula.

  • PDF

Assessment of Flood Probability Based on Temporal Distribution of Forecasted-Rainfall in Cheongmicheon Watershed (예보강우의 시간분포에 따른 청미천 유역의 홍수 확률 평가)

  • Lee, Hyunji;Jun, Sang Min;Hwang, Soon Ho;Choi, Soon-Kun;Park, Jihoon;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.17-27
    • /
    • 2020
  • The objective of this study was to assess the flood probability based on temporal distribution of forecasted-rainfall in Cheongmicheon watershed. In this study, 6-hr rainfalls were disaggregated into hourly rainfall using the Multiplicative Random Cascade (MRC) model, which is a stochastic rainfall time disaggregation model and it was repeated 100 times to make 100 rainfalls for each storm event. The watershed runoff was estimated using the Clark unit hydrograph method with disaggregated rainfall and watershed characteristics. Using the peak discharges of the simulated hydrographs, the probability distribution was determined and parameters were estimated. Using the parameters, the probability density function is shown and the flood probability is calculated by comparing with the design flood of Cheongmicheon watershed. The flood probability results differed for various values of rainfall and rainfall duration. In addition, the flood probability calculated in this study was compared with the actual flood damage in Cheongmicheon watershed (R2 = 0.7). Further, this study results could be used for flood forecasting.

The Study on Flood Runoff Simulation using Runoff Model with Gauge-adjusted Radar data (보정 레이더 자료와 유출 모형을 이용한 홍수유출모의에 관한 연구)

  • Bae, Young-Hye;Kim, Byung-Sik;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.51-61
    • /
    • 2010
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Therefore, it is important to understand the spatial-temporal features of rainfall. In this study, RADAR rainfall was used to calculate gridded areal rainfall which reflects the spatial-temporal variability. In addition, Kalman-filter method, a stochastical technique, was used to combine ground rainfall network with RADAR rainfall network to calculate areal rainfall. Thiessen polygon method, Inverse distance weighting method, and Kriging method were used for calculating areal rainfall, and the calculated data was compared with adjusted areal RADAR rainfall measured using the Kalman-filter method. The result showed that RADAR rainfall adjusted with Kalman-filter method well-reproduced the distribution of raw RADAR rainfall which has a similar spatial distribution as the actual rainfall distribution. The adjusted RADAR rainfall also showed a similar rainfall volume as the volume shown in rain gauge data. Anseong-Cheon basin was used as a study area and the RADAR rainfall adjusted with Kalman-filter method was applied in $Vflo^{TM}$ model, a physical-based distributed model, and ModClark model, a semi-distributed model. As a result, $Vflo^{TM}$ model simulated peak time and peak value similar to that of observed hydrograph. ModClark model showed good results for total runoff volume. However, for verifying the parameter, $Vflo^{TM}$ model showed better reproduction of observed hydrograph than ModClark model. These results confirmed that flood runoff simulation is applicable in domestic settings(in South Korea) if highly accurate areal rainfall is calculated by combining gauge rainfall and RADAR rainfall data and the simulation is performed in link to the distributed hydrological model.

Effect of Livestock Liquid Manure Released at a Rice Field on Quality of Soil and Water in the Saemangeum Watershed (가축분뇨 액비 살포가 새만금유역에서의 논토양과 수질에 미치는 영향)

  • Kim, Mi-Sug;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.19-31
    • /
    • 2016
  • The Saemangeum watershed is required to manage water pollution effectively but the effect of liquid manure (LM) on soil and water quality in the basin is not clearly identified as yet. This study aims at assessing the effect on soil of a rice field and water quality of water bodies near the rice field during rice-crop time period to find out the effect of LM, the effect of rainfall, and the effect of rice-crop environment on soil and water quality by analyzing data of nitrogen components. As a result of the LM distribution, $NO_3-N$ was much higher than other N components in the entire soil layers and it was accelerated by rainfall right after the LM distribution. Compared to chemical fertilizer (CF), LM was slightly affected but still influenced on the surface water quality. During weak rainfall, low nitrogen concentration in topsoil was resulted as NH3-N decreased and Org-N and $NO_3-N$ increased. $NO_3-N$ concentration in the water of irrigation canals increased with time. During intensive rainfall, $NO_3-N$ and Org-N of the soil were measured highly in the submerged condition, while the water quality of the rice field was lower due to flooding into the irrigation canal as well as the growth of the rice plants. Also, total nitrogen was increased more than 7 times and it showed serious water quality deterioration due to LM and excessive fertilizer distribution, and rainfall during all rice-crop processes. The effect of LM on water quality should be studied consistently to provide critical data while considering weather condition, cropping conditions, soil characteristics, and so on.