• Title/Summary/Keyword: time distribution of rainfall

Search Result 256, Processing Time 0.028 seconds

Effect of Rainfall Distribution Types of Moving Rainstorms on Surface Runoff (이동강우의 공간적 분포형이 지표면유출에 미치는 영향)

  • Jeon, Min-Woo;Lee, Hyo-Sang;Jeon, Jong-Ki
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.167-178
    • /
    • 2007
  • Based on the kinematic wave equations, the influence of moving rainstorms on the surface runoff were analyzed with a focus on the rainfall distribution types. Applied hypothetical rainfall distribution types of moving rainstorms used are uniform, advanced, delayed and intermediate type. The moving rainstorm velocities applied in this study were $0.125{\sim}2.0m/s$ of moving upstream and downstream direction of plane surface. Simulations were undertaken by varying the rainfall distribution type, moving rainstorm velocity and moving direction, and the results were compared with that of stationary rainfall. The results indicate significant differences in peak discharges and hydrograph shapes for moving rainstorms of various rainfall patterns and moving directions. It shows that the moving rainstorms of downstream direction generate the largest peak runoff at all rainfall distributions. The sensitivity of runoff to rainfall distribution types decreases as storm velocity increases. It is clear that faster rainstorm velocity generates faster peak time and becomes thin hydrographs rapidly.

Some models for rainfall focused on the inner correlation structure

  • Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1290-1294
    • /
    • 2004
  • In this study, new stochastic point rainfall models which can consider the correlation structure between rainfall intensity and duration are developed. In order to consider the negative and positive correlation simultaneously, the Gumbels type-II bivariate distribution is applied, and for the cluster structure of rainfall events, the Neyman-Scott cluster point process is selected. In the theoretical point of view, it is shown that the models considering the dependent structure between rainfall intensity and duration have slightly heavier tail autocorrelation functions than the corresponding independent mode]s. Results from generating long time rainfall events show that the dependent models better reproduce historical rainfall time series than the corresponding independent models in the sense of autocorrelation structures, zero rainfall probabilities and extreme rainfall events.

  • PDF

Estimation of Design Flood Considering Time Distribution of Rainfall (강우 시간분포를 고려한 설계홍수량산정)

  • Park, Jae-Hyun;Ahn, Sang-Jin;Hahm, Chang-Hahk;Choi, Min-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1191-1195
    • /
    • 2006
  • Now days, heavy storm occur to be continue. It is hard to use before frequency based on flood discharge for decision that design water pocket structure. We need to estimation of frequency based on flood discharge on the important basin likely city or basin that damage caused by flood recurrence. In this paper flood discharge calculated by Clark watershed method and SCS synthetic unit hydrograph method about upside during each minute of among time distribution method of rainfall, Huff method choosing Bocheong Stream basin that is representative basin of International Hydrologic Project (IHP) about time distribution of rainfall that exert big effect at flood discharge estimate to research target basin because of and the result is as following. Relation between probability flood discharge that is calculated through frequency analysis about flood discharge data and rainfall - runoff that is calculated through outward flow model was assumed about $48.1{\sim}95.9%$ in the case of $55.8{\sim}104.0%$, SCS synthetic unit hydrograph method in case of Clark watershed method, and Clark watershed method has big value overly in case of than SCS synthetic unit hydrograph method in case of basin that see, but branch of except appeared little more similarly with frequency flood discharge that calculate using survey data. In the case of Critical duration, could know that change is big area of basin is decrescent. When decide time distribution type of rainfall, apply upside during most Huff 1-ST because heavy rain phenomenon of upsides appears by the most things during result 1-ST about observation recording of target area about Huff method to be method to use most in business, but maximum value of peak flood discharge appeared on Huff 3-RD too in the case of upside, SCS synthetic unit hydrograph method during Huff 3-RD incidental of this research and case of Clark watershed method. That is, in the case of Huff method, latitude is decide that it is decision method of reasonable design floods that calculate applying during all $1-ST{\sim}4-TH$.

  • PDF

Application of a Distribution Rainfall-Runoff Model on the Nakdong River Basin

  • Kim, Gwang-Seob;Sun, Mingdong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.976-976
    • /
    • 2012
  • The applicability of a distributed rainfall-runoff model for large river basin flood forecasts is analyzed by applying the model to the Nakdong River basin. The spatially explicit hydrologic model was constructed and calibrated by the several storm events. The assimilation of the large scale Nakdong River basin were conducted by calibrating the sub-basin channel outflow, dam discharge in the basin rainfall-runoff model. The applicability of automatic and semi-automatic calibration methods was analyzed for real time calibrations. Further an ensemble distributed rainfall runoff model has been developed to measure the runoff hydrograph generated for any temporally-spatially varied rainfall events, also the runoff of basin can be forecast at any location as well. The results of distributed rainfall-runoff model are very useful for flood managements on the large scale basins. That offer facile, realistic management method for the avoiding the potential flooding impacts and provide a reference for the construct and developing of flood control facilities.

  • PDF

Stochastic Structure of Daily Rainfall in Korea (한국 일강우의 추계학적 구조)

  • 이근후
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.72-80
    • /
    • 1989
  • Various analyses were made to investigate the stochastic structure of the daily rainfall in Korea. Records of daily rainfall amounts from 1951 to 1984 at Chinju Metesrological Station were used for this study. Obtained results are as follows : 1. Time series of the daily rainfall at Chinju were positively, serially correlated for the lag as large as one day. 2. Rainfall events, defined as a sequence of consecutive wet days separated by one or more dry days, showed a seasonal variation in the occurrence frequency. 3. The marginal distribution of event characteristics of each month showed significant dif- ferences each other. Events occurred in summer had longer duration and higher magnitude with higher intensity than those of events occurred in winter. 4. There were significant positive correlations among four event characteristics ; dura- tion, magnitude, average intensity, and maximum intensity. 5. Correlations among the daily rainfall amounts within an event were not significant in general. 6. There were no consistant significancy in identity or difference between the distribu- tions of daily rainfall amounts for different days within events. 7. Above mentioned characteristics of daily rainfall time series must be considered in building a stochastic model of daily rainfall.

  • PDF

Rainfall-intensity distribution for an analysis of the effects of rain attenuation (강우감쇠의 영향 분석을 위한 국내 각 지역의 강우강도 분포)

  • 이형수;신철호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.1006-1015
    • /
    • 1998
  • In general, attenuation at frequencies over 20GHz is mainly due to absorption by satmospheric gases, rain, and snow. Among this factors rain become an important limiting factor. Rain attenuation is highly influenced by rainfall-intensity and it varies over time and space. Thus it is requeired to obtain spatial and temporal data of rainfall-intensity for precise prediction of rainfall attenuation. In this paper, rainfall intensity of thiry-two measurement sites in South Korea excluding JeiJdo Islands over recent ten years is obtained and the regional relation between rainfall-intensity and percent of time is analyzed. Also we present the new method about rainfall-intensity cumulative distribution.

  • PDF

Rainfall analysis considering watershed characteristics and temporal-spatial characteristics of heavy rainfall (집중호우의 시·공간적 특성과 유역특성을 고려한 강우분석 연구)

  • Kim, Min-Seok;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.739-745
    • /
    • 2018
  • Recently, the incidence of heavy rainfall is increasing. Therefore, a rainfall analysis should be performed considering increasing frequency. The current rainfall analysis for hydrologic design use the hourly rainfall data of ASOS with a density of 36 km on the Korean Peninsula. Therefore, medium and small scale watershed included Thiessen network at the same rainfall point are analyzed with the same design rainfall and time distribution. This causes problem that the watershed characteristics can not be considered. In addition, there is a problem that the temporal-spatial change of the heavy rainfall occurring in the range of 10~20 km can not be considered. In this study, Author estimated design rainfall considering heavy rainfall using minutely rainfall data of AWS, which are relatively dense than ASOS. Also, author analyzed the time distribution and runoff of each case to estimate the huff's method suitable for the watershed. The research result will contribute to the estimation of the design hydrologic data considering the heavy rainfall and watershed characteristics.

Ka Band Rain Attenuation Analysis of Domestic Regional Rainfall-Rate Distribution by Crane Prediction Model (Crane 예측 모델을 활용하여 국내 지역별 강우강도 분포에 따른 Ka대역 강우감쇠 분석)

  • Cho, Yongwan
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.110-113
    • /
    • 2016
  • In this paper of ka band satellite communication using geostationary satellite is very weak to rainfall. So the rain attenuation reflect the values calculated using the satellite communication links vulnerable when designing a more reliable rainfall area distribution of rain attenuation and accurate predictive models must analyze the link budget. In this paper, by utilizing domestic distribution analysis in the recent local rainfall Crane and regional rainfall in the model and compared with the country of the regional distribution of rainfall in your area to fit the rain attenuation in Ka band frequency characteristics Crane rain attenuation prediction models were analyzed to between geostationary satellites and ground station position, distance and year time percentage(%).

Suggestion of Probable Rainfall Intensity Formula Considering the Pattern Change of Maximum Rainfall at Incheon City (최대강우 패턴 변화를 고려한 인천지방 확률강우강도식의 제안)

  • Han Man-Shin;Choi Gye-Woon;Chung Yeun-Jung;Ahn Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.521-531
    • /
    • 2006
  • The formula was proposed through the examination of probability rainfall intensity formula used in Incheon based upon recent occurrences of heavy rain and extraordinary storms. Random-time maximum annual rainfalls were estimated for durations from ten minutes to twenty-four hours from the data by Korea Meteorological Administration. Eleven types of probability distribution are considered to estimate probable rainfall depths for different storm durations at Incheon city. Three goodness-of-fit tests including Chi-square, Kolmogorov-Smirmov and framer Von Misses were used to analyze the tendency of recent rainfall. Considering maximum rainfall occurred, General Extreme Value(GEV) distribution was chosen as the appropriate probability distribution. Five types of probability rainfall formulas including Talbot type, Sherman type, Japanese type, unified type I and unified type II are considered to determine the best type for rainfall intensity at Incheon. The formula was determined considering the time of concentration of sewer system and river at Incheon city. Unified type I was chosen for its accuracy and was proposed to represent rainfall intensity of Incheon district.

Development of a Rainfall Time Distribution Model for Urban Watersheds (도시유역의 유출특성을 고려한 강우분포 모형의 개발)

  • Joo, Jin-Gul;Lee, Jung-Ho;Jo, Deok-Jun;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.655-663
    • /
    • 2007
  • This study suggests a new time distribution method of rainfall for small urban watersheds. IETD (Interevent Time definition) determination method considering basin characteristics and dimensionless accumulation rainfall curves involving rainfall events with shorter duration than 3-hours are suggested. A new definition of IETD is the time period from the end of a rainfall event to the end of a direct runoff. Using the method, we drive an area-IETD regression curve for the Joong-Rang basin. The rainfall event with 10 year-return periods, 2-hour duration is distributed and applied four urban watersheds. In the four watersheds, we calculate hydrographs for four watersheds using SWMM and compare them with ones of the Huff's distribution model. From the comparison, we find that peak flows resulted from the developed methodology are $11\sim15%$ larger than ones from the Huff's model. As conclusion, the Huff method should be adopted for the urban watersheds with careful verification.