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Abstract

In this study, new stochastic point rainfall models which can consider the correlation structure
between rainfall intensity and duration are developed. In order to consider the negative and
positive correlation simultaneously, the Gumbels type-II bivariate distribution is applied, and for
the cluster structure of rainfall events, the Neyman-Scott cluster point process is selected. In the
theoretical point of view, it is shown that the models considering the dependent structure between
rainfall intensity and duration have slightly heavier tail autocorrelation functions than the
corresponding independent models. Results from generating long time rainfall events show that the
dependent models better reproduce historical rainfall time series than the corresponding independent
models in the sense of autocorrelation structures, zero rainfall probabilities and extreme rainfall
events
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1. Introduction

A stochastic rainfall model has a considerable portion in any stochastic hydrologic analysis.
Cluster point processes have been used to model hourly rainfall events. However, in order to
easily derive the model covariance structure, many models have assumed the independent structure
between rainfall intensity and duration except a few models although indeed the independence is
totally unrealistic and gives rise to critical model limitations. Even though above models can
consider the dependence, they have some important problems, and they only applied the Poisson
process to rainfall occurrence without considering any clustering feature of rainfall. In particular,
Singh and Singh (1991), Bacchi et al. (1994), and Kurtothe et al. (1997) applied the Gumbel’s
type-I bivariate exponential distribution (Gumbel, 1960). Therefore, they just considered the
negative correlation between rainfall intensity and duration by reason that this bivariate
distribution always has the negative correlation between the variables. In the cases of Cordova
and Rodriguez-Iturbe (1985), and Goel et al. (2000), the Downton’s bivariate exponential
distribution (Downton, 1970) was applied in order to consider the positive correlation between
rainfall intensity and duration. However, Cordova and Rodriguez-Iturbe (1985) just applied it to
compute the rainfall amount (not intensity) with the intention of computing surface runoff.
Although Goel et al. (2000) insisted that their model could consider the negative correlation, the
Downton'’s distribution can consider only the positive correlation between the variables (Downton,
1970; Nagao and Kadoya, 1971; Cordova and Rodriguez-Iturbe, 1985). In this study we intend to
develop stochastic point rainfall models which can explain the correlation between rainfall intensity

and duration and the clustering feature of rainfall occurrence.
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2. Poisson Rectangular Pulse Model

The model representing rainfall intensity X (t) is based upon the following assumptions.
There are storms that occur in the Poisson process with parameter A; each event is a rectangular
pulse of random intensity %, and duration ?,. It is assumed that the event characteristics are
independent of the times of occurrence and that they are identically distributed and mutually
independent random variables. In the traditional case, %, and %, for each event are also

independent. However, in this study it is assumed that in each event, ir and T, are considered

correlated random variables. In order to consider such correlations, we consider %, and t, to be
represented by the bivariate exponential distribution of the type II proposed by Gumbel (1960).
Fro, Git,) = pe” e " 147 (2¢ " = 1)(2¢7 " — 1)) M

where [, 1), and 7" are parameters which should be estimated later. The marginal distributions of

i" and t, are given by the following.
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Hence, the second-order properties of the aggregated model process YT, the cumulative rainfall

amount over the time interval 1 are the following.
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The detailed derivation without considering the dependent structure between Z'T and t, is given by
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Rodriguez-Tturbe et al. (1984). The results of equations (4)7(6) can be derived by the same
manner with Rodriguez-Iturbe et al. (1984) except for considering the dependent structure. If T

would be zero, these formulas perfectly agree with the corresponding equations of the traditional
Poisson rectangular pulses model without considering the dependent structure between rainfall

intensity and duration.

3. Neyman—-Scott Rectangular Pulse Model

The Poisson process with parameter A governs storm arrivals. The storm is conceptualized as
many rain cells according to a time-placement probability density function, f (t)
fit)=p" B>0 )
where ﬁ is a parameter which also should be estimated later. The number of cells per a storm

is a random variable V, which is independent of the storm properties, and is assumed to be



governed by the Poisson distribution. These cells are distributed by the Neyman-Scott process.

A detailed discussion on this process is given by Kavvas and Delleur (1981), and Waymire and

Gupta (1981). Each cell is the rectangular pulse of random intensity i,r and duration ¥, as the
previous case. That is, we consider i,,, and t, to be represented by

i (int,) = pe” e ™ [1 4 r(2e7 " = 1)(2¢ ™ — 1) ®
Hence, the second-order properties of the aggregated model process YT are the following.
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The detailed derivation without considering the dependent structure between 7;,,, and ¢, is given by
Rodriguez-Tturbe (1986). The results of equations (9)7(11) can be derived by the same manner
with Rodriguez-Iturbe (1986) except for considering the dependent structure. As one should
expect, if T would be zero, these formulas completely agree with the corresponding equations of

the traditional Neyman-Scott rectangular pulses model without considering the dependent structure

between rainfall intensity and duration.

4. Parameter Estimation

The above models have four or six parameters: >\, w,n, T, ﬁ, and I [V ], which should be

estimated using the method of moments. Various combinations of first- and second-order
statistics from historical rainfall data can be equated to their theoretical expressions, resulting in a

set of four or six highly nonlinear equations with four or six unknowns. A minimum least square

technique has been employed to obtain estimates of the model parameters. Let F (X ) be the set

of nonlinear equations in parameter X that must satisfy the observation vector 8:
F(X)—0=0 (12)

where F' (X ) is the best estimate of . The elements in 6 have different order of magnitudes
and hence their sum of the squares tends to be biased toward higher values. To circumvent such
problem, every element of F (X ) is normalized by the corresponding element of 6. Now, the

solution of equation (12) may be derived through a nonlinear minimization:
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The equation (13) is applied to the traditional Poisson rectangular pulse model (PRPM), the
dependent Poisson rectangular pulse model (DPPRPM), the tradition Neyman-Scott rectangular
pulse model (NSRPM), and the dependent Neyman-Scott rectangular pulse model (DPNSRPM).
The results of the parameter estimation are given in Table 1. In order to satisfy the temporal
homogeneity with regard to the rainfall characteristics, we used only July (wet season) data for

Seoul.
5. Model Performances

Using estimated parameters, about 1,000 days rainfall depths are generated for each model
Fig. 1 shows the probability of zero depth from original data and generated data. As can be seen
in Fig. 1, the dependent models have more similar dry-wet time structure of rainfall than the
corresponding independent models. This feature is thought to be important in the hydrologic
applications where the soil moisture variation and evaporation of a basin are of interest. The
further study about the soil moisture variation using the dependent and independent models is
recommendable and being explored by the first author. The extreme value analysis for various
durations using the above generations is represented in Fig. 2. As can be seen in Fig. 2, the
results of the extreme value analysis for various durations show that the dependent models have

more suitable structures than those of the corresponding independent models.
6. Conclusions

In this study we constructed four stochastic point rainfall models: 1) with or without considering
the correlation between rainfall intensity and duration and 2) with or without considering the
cluster structure of rainfall. Especially in the case of considering the correlation between rainfall
intensity and duration, such models were developed to be able to simulate both the positive or
negative correlation, which depends on historical rainfall events. The parameters of each model can
be estimated by using the nonlinear optimization technique combined with the method of moments
in the sense of comparing the statistics from historical rainfall events with the theoretical model
statistics. As a result from generating long time rainfall events with the estimated model
parameters, the dependent-clustering model shows the best performances in the sense of
reproducing the statistics of historical rainfall time series. Then it comes the
independent-clustering model, the dependent-nonclustering model, and the
independent-nonclustering model in that order. Especially, it is noticeable that the problems with
the overestimation of zero rainfall probabilities and the underestimation of extreme rainfall events
can be improved by considering the correlation structure between rainfall intensity and duration. In
addition, if such inner correlation structures of rainfall can be coupled with modeling the soil

moisture behavior, another significant results will be expected.
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Table 1. The results of the parameters estimation

Station Parameter PRPM DPPRPM NSRPM DPNSRPM
Seoul A, 1/hour 0.051836 0.035667 0.006686 0.0070001
M, 1/hour 0.11303 0.093143 0.13149 0.10426
1, 1/hour 0.92059 0.58952 1.3427 0.83888
E[v] 13.1552 8.1427
I6] 0.086004 0.064729
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Fig. 1. The probability of zero depth Fig. 2. The extreme value analysis



