PURPOSES : This study was done to model the headway distribution of rural two lane roads. METHODS : Time headway data for the various level of traffic volumes was measured in twelve sites. Based on the time headway data, existing seven mathematical models were evaluated and selected by comparing graphically the measured and theoretical distributions and conducting the Chi-square test. RESULTS : The results show that both the Schul model and Composite Model were the most appropriate models of the models. Based on the measured time-headway distributions, this study proposed a new headway distribution model by the shift of the Schul model. CONCLUSIONS : The shifted Schul model has the ability to describe time headway distirbutons for random, intermediate, and constant-headway states.
Communications for Statistical Applications and Methods
/
제10권2호
/
pp.268-275
/
2003
We consider the Bayesian accelerated failure time model. The error distribution is assigned a skewed normal distribution which is including normal distribution. For noninformative priors of regression coefficients, we show the propriety of posterior distribution. A Markov Chain Monte Carlo algorithm(i.e., Gibbs Sampler) is used to obtain a predictive distribution for a future observation and Bayes estimates of regression coefficients.
In this paper we consider the discrete time delayed renewal risk model. We investigate what will happen when the distribution function of the discounted proper deficit is asymptotic in the initial surplus. In doing this we establish several lemmas regarding some related ruin quantities in the discrete time delayed renewal risk model, which are of significance on their own right.
Yavari, Parvin;Abadi, Alireza;Amanpour, Farzaneh;Bajdik, Chris
Asian Pacific Journal of Cancer Prevention
/
제13권5호
/
pp.1829-1831
/
2012
Background: The generalized gamma distribution statistics constitute an extensive family that contains nearly all of the most commonly used distributions including the exponential, Weibull and log normal. A saturated version of the model allows covariates having effects through all the parameters of survival time distribution. Accelerated failure-time models assume that only one parameter of the distribution depends on the covariates. Methods: We fitted both the conventional GG model and the saturated form for each of its members including the Weibull and lognormal distribution; and compared them using likelihood ratios. To compare the selected parameter distribution with log logistic distribution which is a famous distribution in survival analysis that is not included in generalized gamma family, we used the Akaike information criterion (AIC; r=l(b)-2p). All models were fitted using data for 369 women age 50 years or more, diagnosed with stage IV breast cancer in BC during 1990-1999 and followed to 2010. Results: In both conventional and saturated parametric models, the lognormal was the best candidate among the GG family members; also, the lognormal fitted better than log-logistic distribution. By the conventional GG model, the variables "surgery", "radiotherapy", "hormone therapy", "erposneg" and interaction between "hormone therapy" and "erposneg" are significant. In the AFT model, we estimated the relative time for these variables. By the saturated GG model, similar significant variables are selected. Estimating the relative times in different percentiles of extended model illustrate the pattern in which the relative survival time change during the time. Conclusions: The advantage of using the generalized gamma distribution is that it facilitates estimating a model with improved fit over the standard Weibull or lognormal distributions. Alternatively, the generalized F family of distributions might be considered, of which the generalized gamma distribution is a member and also includes the commonly used log-logistic distribution.
The study interprets each of three classification models based on Bath-Tub Failure Rate (BTFR), Extreme Value Distribution (EVD) and Conjugate Bayesian Distribution (CBD). The classification model based on BTFR is analyzed by three failure patterns of decreasing, constant, or increasing which utilize systematic management strategies for reliability of time. Distribution model based on BTFR is identified using individual factors for each of three corresponding cases. First, in case of using shape parameter, the distribution based on BTFR is analyzed with a factor of component or part number. In case of using scale parameter, the distribution model based on BTFR is analyzed with a factor of time precision. Meanwhile, in case of using location parameter, the distribution model based on BTFR is analyzed with a factor of guarantee time. The classification model based on EVD is assorted into long-tailed distribution, medium-tailed distribution, and short-tailed distribution by the length of right-tail in distribution, and depended on asymptotic reliability property which signifies skewness and kurtosis of distribution curve. Furthermore, the classification model based on CBD is relied upon conjugate distribution relations between prior function, likelihood function and posterior function for dimension reduction and easy tractability under the occasion of Bayesian posterior updating.
The main objective of this research is to develop a model to select the optimal input service level for a distribution center - multi branch inventory distribution system. With the continuous review policy, the distribution center places an order for specific order quantity to an outside supplier, and the order quantity is replenished after a certain lead time. Also, each branch places an order for particular order quantity to the distribution center to satisfy the customer demands, and receives the replenishment after a lead time. When an out of stock condition occurs during an order cycle, a backorder is placed to the upper level to fill the unfilled demands. With these situation, variable demand and variable lead time are used for better industrial practice. Further, actual lead times with a generic lead time distribution are used in developing the control model. Under the actual lead time model, the customer service measures actually attained for the distribution center and each branch are explained as the effective customer service measures. Thus, throughout the optimal control (using computer search procedures), we can select the optimal input service levels for the distribution center and each branch to attain the effective service level for each branch which is consistent with the goal level of service for each branch. At the same time, the entire distribution system keeps minimum inventories.
This paper addresses the transportation planning that is based on genetic algorithm for determining transportation time and transportation amount of minimizing cost of distribution system. The vehicle routing of minimizing the transportation distance of vehicle is determined. A distribution system is consisted of a distribution center and many retailers. The model is assumed that the time horizon is discrete and finite, and the demand of retailers is dynamic and deterministic. Products are transported from distribution center to retailers according to transportation planning. Cost factors are the transportation cost and the inventory cost, which transportation cost is proportional to transportation distance of vehicle when products are transported from distribution center to retailers, and inventory cost is proportional to inventory amounts of retailers. Transportation time to retailers is represented as a genetic string. The encoding of the solutions into binary strings is presented, as well as the genetic operators used by the algorithm. A mathematical model is developed. Genetic algorithm procedure is suggested, and a illustrative example is shown to explain the procedure.
The main objective of this research is to develop a model to select the optimal input service level for a distribution center-multi branch inventory distribution system. With the continuous review policy, the distribution center places an order for specific order quantity to an outside supplier, and the order quantity is replenished after a certain lead time Also, each branch places an order for particular order quantity to the distribution center to satisfy the customer demands, and receives the replenishment after a lead time. When an out of stock condition occurs during an order cycle, a backorder is placed to the upper level to fill the unfilled demands. With these situation, variable demand and variable lead time are used for better industrial practice. Further, actual lead times with a generic lead time distribution are used in developing the control model. Under the actual lead time model, the customer service measures actually attained for the distribution center and each branch are explained as the effective customer service measures. Thus, throughout the optimal control (using computer search procedures), we can select the optimal input service levels for the distribution center and each branch to attain the effective service levels for each branch which is consistent with the goal level of service for each branch. At the same time, the entire distribution system keeps minimum inventories.
Analytic models have been developed to solve integrated production-distribution problems in supply chain management (SCM). As one of major constraints in analytic models, capacity, which is the total operation time in this paper has mostly been known or disregarded assuming infinite capacity. Also, as major factors, machine processing time to fabricate or assemble a part or product at a certain machine center in production system and vehicle processing time to deliver a product to a customer by a certain vehicle in distribution system have been fixed and regarded as a static factor, But in the real systems significant differences exit between capacity and the required time to achieve the production-distribution plan and between processing time and consumed time to process a part or product. In this paper, capacity and processing times in the analytic model are considered as dynamic factors and adjusted by the results from independently developed simulation model, which includes general production-distribution characteristics. Through experiments, we obtain the more realistic solutions reflecting stochastic natures by performing the iterative analytic-simulation procedure.
소프트웨어 안정성은 운영 환경에서 시간의 흐름에 따른 오작동이 없이 운영 될 수있는 가능성이라고 할 수 있다. 소프트웨어의 고장 분석을 위한 유한 고장 NHPP에서, 고장 발생률은 일정하거나 단조롭게 증가하거나 단조 감소하는 추이를 나타낼 수 있다. 본 연구에서는 NHPP 모형에 근거하고 소프트웨어 고장시간 자료를 바탕으로 와이블 분포의 형상모수를 고려한 지수분포 Rayleigh 분포, 역-지수 분포를 수명분포로 하여 소프트웨어 개발 비용모형에 관한 속성을 비교 평가분석을 하였다. 또한 모수 추정은 최우 추정방법을 적용하고 데이터 추세검정은 박스-플롯방법을 이용하였다. 본 연구의 결과는 Rayleigh 모형이 역-지수 모형이나 Goel-Okumoto 모형에 비교해서 방출 시기는 Rayleigh 모형이 가장 빠르고 방출시점의 비용도 가장 경제적임을 알 수 있다. 이 연구의 결과를 이용하면 소프트웨어 개발자 및 운용자들은 최적방출시간과 경제적인 개발비용을 예측 하는데 활용 할 수 있으리라 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.