• 제목/요약/키워드: time dependent creep

검색결과 258건 처리시간 0.028초

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

화력 발전용 로터강의 초기 변형율이 CYCLIC 크리프 특성에 미치는 영향에 관한 연구 (A Study on the Effect of Initial Strain on Cyclic Creep Properties of Steam Turbine Rotor Steel)

  • 오세규;정순억;한상덕
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.78-86
    • /
    • 1992
  • The creep behaviors of 1%Cr-Mo-V and 12%Cr steam turbine rotor steels under static or cyclic load were examined at 600 and $700^{\circ}C$. The relationship between these two kinds of phenomena was studied and the experimental results were summarized as follows: 1) It is confirmed that the cyclic creep strain dependent on time is more available for creep, behavior analysis according to frequency change than that dependent on number of cycles, and the static creep, the special case of cyclic creep with stress ratio of 1 can be also more effectively analyzed by time-dependence. 2) The steady cyclic creep rate vs. the steady static creep rate, increases according to the increase of stress ratio, and this phenomena may occur on occasion of the decrease of the internal stress. 3) The initial strain affects on all the creep properties of the transient region, the steady state region and the rupture time in cyclic creep as well as static creep, and the quantitative relationships among them exist.

  • PDF

CFT 기둥의 장기거동 특성에 관한 연구 (The Long-term Behavior of CFT-Column)

  • 권승희;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.579-582
    • /
    • 1999
  • This paper represents the results of experiments designed to investigate the time-dependent response of concrete and steel tube in circular concrete-filled steel tubes, as are deployed extensively in high-rise building construction. The experiments were performed for creep of concrete and CFT column specimens with three loading cases. The creep coefficient and specific creep(unit creep) obtained from the test results were used for estimating and comparing the time-dependent response of each case. From these analyses, it is show that CFT-column has many merits for long-term behavior.

  • PDF

응력수준 및 함수비에 따른 이암의 Creep 특성에 관한 연구 (Creep Characteristics of Mudstone According to Stress Level and Water Content)

  • 이영휘;정강복
    • 한국지반환경공학회 논문집
    • /
    • 제13권3호
    • /
    • pp.39-51
    • /
    • 2012
  • 본 연구에서는 포항이암을 대상으로 다양한 경계조건에서의 creep 시험을 수행하여 이암의 시간의존적 특성을 분석하였으며, 이를 바탕으로 기존에 발표된 creep에 대한 점탄성 모델 및 경험식들과 비교 분석함으로써 더 합리적으로 creep 특성을 평가할 수 있는 방법을 제안하고자 한다. Creep 시험결과를 Griggs(1936), Cottrell(1952) 및 Singh(1975)이 제안한 경험식에 대하여 분석한 결과, 전반적으로 응력수준 및 함수비가 증가할수록 creep 상수가 증가하는 경향을 나타내었다. 또한, Singh의 경험식에 의한 예측치는 실측치와 매우 높은 상관성을 보이고 있는 것을 확인할 수 있었으며, 이로부터 이암의 크리프 거동을 해석함에 있어 Singh의 경험식을 적용함이 바람직할 것으로 판단된다. 유동학적 모델인 Burger 모델에 의한 예측치와 실측치를 비교한 결과, 매우 좋은 일치를 보이고 있음을 알 수 있으며, 이로부터 이암의 크리프 거동을 해석함에 있어 Maxwell 요소와 Kelvin 요소를 직렬로 연결한 Burger 모델을 적용하는 것이 바람직할 것으로 판단된다.

Assessment of time-dependent behaviour of rocks on concrete lining in a large cross-section tunnel

  • Mirzaeiabdolyousefi, Majid;Nikkhah, Majid;Zare, Shokrollah
    • Geomechanics and Engineering
    • /
    • 제29권1호
    • /
    • pp.41-51
    • /
    • 2022
  • Tunneling in rocks having the time-dependent behavior, causes some difficulties like tunnel convergence and, as a result, pressure on concrete lining; and so instability on this structure. In this paper the time-dependent behaviour of squeezing phenomenon in a large cross section tunnel was investigated as a case study: Alborz tunnel. Then, time-dependent behaviour of Alborz tunnel was evaluated using FLAC2D based on the finite difference numerical method. A Burger-creep viscoelastic model was used in numerical analysis. Using numerical analysis, the long-time effect of squeezing on lining stability was simulated.This study is done for primary lining (for 2 years) and permanent lining (for 100 years), under squeezing situations. The response of lining is discussed base on Thrust Force-Bending Moment and Thrust Force-Shear Force diagrams analysing. The results determined the importance of consideration of time-dependent behaviour of tunnel that structural forces in concrete lining will grow in consider with time pass and after 70 years can cause instability in creepy rock masses section of tunnel. To show the importance of time-dependent behavior consideration of rocks, elastic and Mohr-Coulomb models are evaluated at the end.

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

Fracture analysis of inhomogeneous arch with two longitudinal cracks under non-linear creep

  • Victor I. Rizov;Holm Altenbach
    • Advances in materials Research
    • /
    • 제12권1호
    • /
    • pp.15-29
    • /
    • 2023
  • In this paper, fracture analysis of a continuously inhomogeneous arch structure with two longitudinal cracks is developed in terms of the time-dependent strain energy release rate. The arch under consideration exhibits non-linear creep behavior. The cross-section of the arch is a rectangle. The material is continuously inhomogeneous along the thickness of the cross-section. The arch is loaded by two bending moments applied at its end sections. The mechanical behavior of the material is described by using a non-linear stress-strain-time relationship. The two longitudinal cracks are located symmetrically with respect to the mid-span of the arch. Due to the symmetry, only half of the arch is considered. Time-dependent solutions to strain energy release rate are obtained by analyzing the balance of the energy. For verification, time-dependent solutions to the strain energy release rate are derived also by considering the time-dependent complementary strain energy. The evolution of the strain energy release rate with the time is analyzed. The effects of material inhomogeneity, locations of the two cracks along the thickness of the arch and the magnitude of the external loading on the time-dependent strain energy release rate are evaluated.

Time-dependent behaviour of interactive marine and terrestrial deposit clay

  • Chen, Xiaoping;Luo, Qingzi;Zhou, Qiujuan
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.279-295
    • /
    • 2014
  • A series of one-dimensional consolidation tests and triaxial creep tests were performed on Nansha clays, which are interactive marine and terrestrial deposits, to investigate their time-dependent behaviour. Based on experimental observations of oedometer tests, normally consolidated soils exhibit larger secondary compression than overconsolidated soils; the secondary consolidation coefficient ($C_{\alpha}$) generally gets the maximum value as load approaches the preconsolidation pressure. The postsurcharge secondary consolidation coefficient ($C_{\alpha}$') is significantly less than $C_{\alpha}$. The observed secondary compression behaviour is consistent with the $C_{\alpha}/C_c$ concept, regardless of surcharging. The $C_{\alpha}/C_c$ ratio is a constant that is applicable to the recompression and compression ranges. Compared with the stage-loading test, the single-loading oedometer test can evaluate the entire process of secondary compression; $C_{\alpha}$ varies significantly with time and is larger than the $C_{\alpha}$ obtained from the stage-loading test. Based on experimental observations of triaxial creep tests, the creep for the drained state differs from the creep for the undrained state. The behaviour can be predicted by a characteristic relationship among axial strain rate, deviator stress level and time.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

가곡광산 화강암의 크리프 특성 (Creep Characteristics of Granite in Gagok Mine)

  • 윤용균;김병철;조영도
    • 터널과지하공간
    • /
    • 제20권5호
    • /
    • pp.390-398
    • /
    • 2010
  • 암석의 시간의존성 거동은 지하 광산 설계나 지하 암반구조물의 장기 안정성 평가를 위한 기본 입력자료로써 사용되는 매우 중요한 특성이다. 본 연구에서는 가곡광산에서 채취한 화강암 시험편에 대해 일축압축 크리프시험을 실시하였다. 측정된 크리프 변형률을 모사하기 위하여 Burgers 모형, Griggs 크리프법칙, Singh 크리프법칙을 사용하였으며 이중에서 Griggs 크리프법칙이 가곡광산 화강암의 실제 크리프 변형 거동을 가장 우수하게 모사하는 것으로 나타났다.