• Title/Summary/Keyword: tilt motion

Search Result 201, Processing Time 0.024 seconds

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

Tracking and Interpretation of Moving Object in MPEG-2 Compressed Domain (MPEG-2 압축 영역에서 움직이는 객체의 추적 및 해석)

  • Mun, Su-Jeong;Ryu, Woon-Young;Kim, Joon-Cheol;Lee, Joon-Hoan
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.27-34
    • /
    • 2004
  • This paper proposes a method to trace and interpret a moving object based on the information which can be directly obtained from MPEG-2 compressed video stream without decoding process. In the proposed method, the motion flow is constructed from the motion vectors included in compressed video. We calculate the amount of pan, tilt, and zoom associated with camera operations using generalized Hough transform. The local object motion can be extracted from the motion flow after the compensation with the parameters related to the global camera motion. Initially, a moving object to be traced is designated by user via bounding box. After then automatic tracking Is performed based on the accumulated motion flows according to the area contributions. Also, in order to reduce the cumulative tracking error, the object area is reshaped in the first I-frame of a GOP by matching the DCT coefficients. The proposed method can improve the computation speed because the information can be directly obtained from the MPEG-2 compressed video, but the object boundary is limited by macro-blocks rather than pixels. Also, the proposed method is proper for approximate object tracking rather than accurate tracing of an object because of limited information available in the compressed video data.

Characteristics and Dynamic Compensation Modeling of Liquid-Based Tilt Sensor (액체저항경사계의 특성과 동적모델링)

  • Song, Mu-Seok;Ahn, Ja-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.73-79
    • /
    • 2005
  • The characteristics of a tilt sensor utilizing the resistance change of an electrolyte associated with inclination is investigated, and a dynamic compensation modeling is proposed to make the real-time measurement of the absolute slope possible even with sporadically dynamic motion. Although the proposed system is small, economical and accurate for quasi-steady slope measurement, since it contains a freesurface the evolution of the liquid surface that has no direct relation to the real slope must be excluded for any rapid rotations or translations. For various artificial motions the response of the sensor is analyzed and simplified modeling equations are proposed.

The Effect of Thoracic Posture on The Shoulder Range of Motion and on Three-Dimensional Scapular Kinematics (흉추 자세가 견관절 가동범위와 3차원적 견갑골 운동학에 미치는 영향)

  • Park, Seung-Kyu;Han, Song-E
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.197-204
    • /
    • 2010
  • Scapular position and motion are essential for normal upper limb mobility; Further, the posture of patients with thoracic kyphosis is related to shoulder girdle function and disorder. The purpose of this study was to examine the effects of thoracic posture on the shoulder range of motion and on three-dimensional scapular kinematics. Thirty healthy subjects performed right-arm abduction along the frontal plane while standing in both erect and in slouched trunk posture. The scapular position and rotation, and shoulder and thoracic angles were recorded using a motion analysis system. The scapular upward rotation and internal rotation were significantly altered according to postural tatiges; however, scapular tilt was not affected. Shoulder angle was significantly decreased in the slouched posture as c rpared to tatt in the erect posture. Thus, a slouched posture(thoracic kyphosis) significantly affects the shoulder range of motion and scapular kinematics during shoulder abduction in the frontal plane.

The Effect of Form and Hardness of Outsoles on the Motion of the Lower Extremity Joints and on Foot Pressure during Gait (보행 시 신발의 아웃솔 형태가 하지 관절 운동과 발의 압력에 미치는 영향)

  • Kim, Eui-Hwan;Kim, Sung-Sup;Kwon, Moon-Seok;Wi, Ung-Ryang;Lim, Jung;Chung, Chae-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.223-230
    • /
    • 2011
  • The purpose of this study was to analysis the effect of form and hardness of outsoles on the motion of the lower extremity joints and on foot pressure during gait. The subjects were 15 women(mean age, $48.5{\pm}2.4$ years), who had no serious musculoskeletal, coordination, balance or joint/ligament problems within 1 year prior to the study. The pelvic tilt, joint angles at the lower extremities and the vertical ground reaction force(GRF) were compared during gait with 3 types of shoes (A, B, C) by using one-way repeated ANOVA(p<.05). During gait, the peak tilt angle and the range of motion(ROM) of the ankle and knee joints were found to be significantly different among the 3 types of shoes. The type C shoes showed a significantly lower mean second maximum vertical GRF than types A and B. The curved outsoles of type C shoes, which had a form and hardness different from those of A and B, was designed strategically for walking shoes to provide stability to the Additionally, type C induced the dispersion of eccentric pressure and made the center of pressure roll over to the center line of the foot.

Stereo Object Tracking System using Multiview Image Reconstruction Scheme (다시점 영상복원 기법을 이용한 스테레오 물체추적 시스템)

  • Ko, Jung-Hwan;Ohm, Woo-Young
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.54-62
    • /
    • 2006
  • In this paper, a new stereo object tracking system using the disparity motion vector is proposed. In the proposed method, the time-sequential disparity motion vector can be estimated from the disparity vectors which are extracted from the sequence of the stereo input image pair and then using these disparity motion vectors, the area where the target object is located and its location coordinate are detected from the input stereo image. Basing on this location data of the target object, the pan/tilt embedded in the stereo camera system can be controlled and as a result, stereo tracking of the target object can be possible. From some experiments with the 2 frames of the stereo image pairs having $256\times256$ pixels, it is shown that the proposed stereo tracking system can adaptively track the target object with a low error ratio of about 3.05 % on average between the detected and actual location coordinates of the target object.

Motion Analysis of Kolman Technique by Korean Top Gymnasts on Horizontal Bar (국내 우수선수들의 철봉 Kolman 기술 동작 분석)

  • Lim, Kyu-Chan;Lee, Nam-Koo
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.283-289
    • /
    • 2021
  • Objective: The aim of this study was to analyze the pattern of Kolman technique by five Korean top gymnasts including the three national athletes on horizontal bar. Method: Two digital high-speed camcorders were used with 90 frames/sec and their Kolman motions were filmed in sports science secondary school gymnasium at U city. After the kinematic and kinetic variables were carried out by Kwon3D 3.1 motion package during the whole phase, the optimized release motion was investigated by simulating the body COG path during the aerial phase. Results: Firstly, it was revealed that the average changes of hip, shoulder joint angle were 84 deg, 53 deg respectively during the functional sub-phase and the average swing phaseal time was 1.21 s. Secondly, it was revealed that the average body COG positions and velocities (Y, Z) at release were -0.65 m, 0.48 m, 1.65 m/s, 3.97 m/s respectively and the average release angle, peak height and flight time were 67 deg, 1.29 m, 0.79 s respectively. Thirdly, it was revealed that the directions of somersault of whole and lower body, tilt of lower body were counterclockwise, whereas the directions of tilt of whole body, twist of whole and lower body were clockwise at the ready for re-grasp. Lastly, it was revealed that the body COG paths were different from each other during the aerial phase followed by the different body COG velocities. Conclusion: Korean gymnasts of this study controlled their motions well in terms of the timing of hip·shoulder joint, body position, body angular momentum especially during the functional sub-phase, but their motions were different during the aerial phase. Nonetheless most of them made the adequate body position at the instant of re-grasp. It would be suggested that Korean gymnasts except S3 should increase the vertical velocity.

Motion Control of an Outdoor Patrol Robot using a Single Laser Range Finder (야외 순찰로봇을 위한 단일 레이저거리센서 기반 충돌 회피 주행 제어기법 개발)

  • Hong, Seung-Bohm;Shin, You-Jin;Chung, Woo-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.361-367
    • /
    • 2010
  • This paper reports the development of a mobile robot for patrol using a single laser range finder. A Laser range finder is useful for outdoor environment regardless of illumination change or various weather conditions. In this paper we combined the motion control of the mobile robot and the algorithm for detecting the outdoor environment. For obstacle avoidance, we adopted the Vector Field Histogram algorithm. A laser range finder is mounted on the mobile robot and looking down the road with a small tilt angle. We propose an algorithm for detecting the surface of the road. The outdoor patrol robot platform is equipped with a DGPS system, a gyro-compass sensor, and a laser range finder. The proposed obstacle avoidance and road detection algorithms were experimentally tested in success.

A Study On the Development of Multi-Purpose Measurement System for the Evaluation of Ship Dynamic Motion (선체 운동 평가를 위한 다기능 계측시스템 개발에 관한 연구)

  • Lee, Yun-Sok;Kim, Chol-Seong;Kong, Gil-Young;Song, Chae-Uk;Um, Pil-Yong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1155-1160
    • /
    • 2005
  • In order to evaluate the safety of navigation at sea and the safety of mooring ship on berthing, it is necessary that the wave and wind induced ship dynamic motion should be measured in real time domain for the validity of theoretical evaluation method such as sea-keeping performance and safety of mooring. In this paper, the basic design of sensors is discussed and some system configurations were shown. The developed system mainly consists of 4 kinds of sensors such as three dimensional accelerator, two dimensional tilt sensor, two displacement sensors and azimuth sensor. Using the this measuring system, it can be obtained the 6 degrees of freedom of ship dynamic motions at sea and on berthing such as rolling, pitching, yawing, sway, heave, surge under the external forces.

  • PDF

Suggestion of Cutoff Frequency in the Washout Filter for a Wheel type Excavator (주행감각 재현을 위한 휠굴삭기용 Washout 필터 설계 및 한계값 추정)

  • Kim, Kwang-Suk;Yoo, Wan-Suk;Lee, Min-Cheol;Son, Kown;Lee, Jang-Myung;Choi, Dae-Hyoung;Park, Min-Gyu;Park, Hyoung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.19-28
    • /
    • 1999
  • In this study, a real-time simulation system and a washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. The excavator model consisting of a boom. bucket, upper frame, lower frame and four wheels, has total 11 degrees of freedom. The suggested washout algorithm consists of high and low pass filters with second order. The high pass filters cut off low frequency of the motion cues limited by platform motion. The cut off frequency for the tilt coordination are suggested for a realistic regeneration of excavator motion.

  • PDF