• Title/Summary/Keyword: tight-binding method

Search Result 40, Processing Time 0.025 seconds

On-off controllable RNA hybrid expression vector for yeast three-hybrid system

  • Bak, Geunu;Hwang, Se-Won;Ko, Ye-Rim;Lee, Jung-Min;Kim, Young-Mi;Kim, Kyung-Hwan;Hong, Soon-Kang;Lee, Young-Hoon
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.110-114
    • /
    • 2010
  • The yeast three-hybrid system (Y3H), a powerful method for identifying RNA-binding proteins, still suffers from many false positives, due mostly to RNA-independent interactions. In this study, we attempted to efficiently identify false positives by introducing a tetracycline operator (tetO) motif into the RPR1 promoter of an RNA hybrid expression vector. We successfully developed a tight tetracycline-regulatable RPR1 promoter variant containing a single tetO motif between the transcription start site and the A-box sequence of the RPR1 promoter. Expression from this tetracycline-regulatable RPR1 promoter in the presence of tetracycline-response transcription activator (tTA) was positively controlled by doxycycline (Dox), a derivative of tetracycline. This on-off control runs opposite to the general knowledge that Dox negatively regulates tTA. This positively controlled RPR1 promoter system can therefore efficiently eliminate RNA-independent false positives commonly observed in the Y3H system by directly monitoring RNA hybrid expression.

Extraction of the Self-Energy from Simulated ARPES Data for High $T_c$ Superconductors (고온초전도체 ARPES 시뮬레이션에서 자체에너지 추출)

  • Bok, Jin-Mo;Yun, Jae-Hyun;Choi, Han-Yong
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • For extraction of the self-energy from the angle resolved photoemission spectroscopy(ARPES) experiments for the cuprate superconductors, the momentum distribution curve(MDC) analysis is commonly used. There are two requirements for this method to work: the self-energy is momentum independent and the bare electron dispersion is known. Assuming that the first condition is satisfied in the cuprates, we checked the effects of the bare dispersion on the extracted self-energy. For this, we first generated the ARPES intensity using the tight-binding band of the B2212 by solving the Eliashberg equation. We then extracted the self-energy from the theoretically generated ARPES intensity using the linear and quadratic dispersions. By choosing the bare dispersion such that the Kramer-Kronig relation is best satisfied between the real and imaginary parts of the extracted self-energy, we confirmed that the quadratic dispersion is better for the bare electron band for Bi2212. The self-energy can be reasonably extracted from the ARPES experiments using the MDC analysis.

  • PDF

Determination of Strongly Interacting Spin Exchange Paths in Cu2(O3PCH2PO3) on the Basis of Spin Dimer Analysis

  • Bae, Hyun-Woo;Koo, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.122-126
    • /
    • 2008
  • The magnetic properties of the organic/inorganic hybrid copper-methylenediphosphonate, Cu2(O3PCH2PO3) were examined by performing the spin dimer analysis based on the extended Hckel tight binding method. In Cu2(O3PCH2PO3) the CuO3 chains made up of edge-sharing CuO5 square pyramidal units are inter-linked by O-P-O bridges. The Cu-O-Cu superexchange interactions of the CuO3 chains are negligibly weak compared with the Cu-O…O-Cu super-superexchange interactions that occur between the CuO3 chains. The spin exchange interactions of Cu2(O3PCH2PO3) are dominated by three super-superexchange interactions, which leads to a three-dimensional antiferromagnetic spin lattice. The strongest spin exchange interactions form isolated spin dimers, which suggests that, to a first approximation, the magnetic properties can be described in terms of an isolated spin dimer model.

Determination of Strongly Interacting Spin Exchange Path and Spin Lattice Model of (VO)2(H2O){O3P-(CH2)3-PO3}ㆍ2H2O on the Basis of Spin Dimer Analysis

  • Kim, Dae-Hyun;Koo, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1665-1668
    • /
    • 2010
  • The spin exchange interactions of $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$ were examined by spin dimer analysis based on extended Huckel tight binding method. The strongest spin exchange interaction occurs through the super-superexchange path $J_2$ and the second strongest spin exchange interaction occurs through the superexchange interaction path $J_1$. There are two strongly interacting spin exchange paths in $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$. Therefore, magnetic susceptibility curve of $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$ can be well reproduced by an alternating onedimensional antiferromagnetic chain model rather than an isolated spin dimer model.

MoS2 Field Effect Transistor 저전력 고성능 소자 구현을 위한 게이트 구조 설계 최적화

  • Park, Il-Hu;Jang, Ho-Gyun;Kim, Cheol-Min;Lee, Guk-Jin;Kim, Gyu-Tae
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.292-294
    • /
    • 2016
  • 이황화몰리브덴을 활용한 전계효과트랜지스터(Field Effect Transistor)는 채널 물질의 우수한 특성으로 차세대 저전력 고성능 스위치와 광전소자로 주목받고있다. Underlap 게이트 구조에서 게이트 길이(L_G), 절연체 두께(T), 절연체 상대유전율(${\varepsilon}_r$)에 따라 변화하는 소자특성을 분석하여 저전력 고성능 $MoS_2$ 전계효과트랜지스터를 위한 게이트 구조 최적화방법을 모색하였다. EDISON simulator 중 Tight-binding NEGF 기반 TMD FET 소자 성능 및 특성 해석용 S/W를 활용하여 게이트 구조에 따른 게이트 전압 - 드레인 전류 상관관계(transfer characteristic)를 얻고, Y-function method를 이용하여 채널 유효전하이동도(Effective Mobility), Sub-threshold Swing, on/off 전류비(on/off current ratio)를 추출하여 비교 분석하였다. 시뮬레이션으로 추출한 소자의 최대 채널 유효전하이동도는 $37cm^2V^{-1}s^{-1}$, on/off 전류비는 $10^4{\sim}10^5$, Sub-threshold Swing은 ~38mV/dec 수준을 보였다.

  • PDF

Electronic Structure and Properties of High-$T_c$ Substitued YBCO Superconductor: Ⅱ. MO Calculations on Charged Cluster Models Relating to High-$T_c$ Se-Substituted YBCO Superconductors

  • Lee, Kee-Hag;Lee, Wang-Ro;Choi, U-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.545-549
    • /
    • 1994
  • Using the extended Hackel molecular orbital method in connection with the tight binding model, we have studied electronic structure and related properties of the charged cluster models relating to superconducting $YBa_{2}Cu_{3}O_{7-x}$, crystals in which O-atoms in regular sites were selectively replaced with Se atoms. In analogy to the isomorphism problem with molecules, we discuss all possible combinations of Se-substitutions in O-sites with one, two, and four Se atoms. The calculations are carried out within charged cluster models for analogues of YBa-copper oxide. Our results suggest that the electronic structure of the symmetrically Se-substituted or Se-added compound is closer to that of the YBCO superconducting compound than that obtained from the unsymmetrical substitution. This applies in particular if O is replaced with Se around the Cu(1) site. Symmetrical substitutions in the $CuO_2$ layers give rise to large variations in the electronic structure of $YBa_{2}Cu_{3}O_{7}$. This is consistent with the fact that superconductivity is very sensitive to the electronic population of the $CuO_2$ layers.

Optical-reflectance Contrast of a CVD-grown Graphene Sheet on a Metal Substrate (금속 기판에 화학증기증착법으로 성장된 그래핀의 광학적 반사 대비율)

  • Lee, Chang-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.114-119
    • /
    • 2021
  • A large-area graphene sheet has been successfully grown on a copper-foil substrate by chemical vapor deposition (CVD) for industrial use. To screen out unsatisfactory graphene films as quickly as possible, noninvasive optical characterization in reflection geometry is necessary. Based on the optical conductivity of graphene, developed by the single-electron tight-binding method, we have investigated the optical-reflectance contrast. Depending on the four independent control parameters of layer number, chemical potential, hopping energy, and temperature, the optical-reflectance contrast can change dramatically enough to reveal the quality of the grown graphene sheet.

Experimental and computational insights into the adsorption of a hydrazone-based heterocyclic compound on steel rebar in synthetic concrete pore solution (합성 콘크리트 공극 솔루션에서 철근에 히드라존 기반 헤테로고리 화합물의 흡착에 대한 실험 및 계산 통찰력)

  • Lgaz, Hassane;Karthick, Subbiah;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.73-74
    • /
    • 2022
  • The corrosion inhibitive effect of a new hydrazone-based heterocyclic compound for steel in simulated concrete pore solution with 3.5 wt.% sodium chloride was investigated by experimental and computational techniques. Electrochemical studies, up to 30 days of immersion, and surface analysis (X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscope (SEM)) were performed to assess the corrosion protection abilities of investigated compound for steel rebar. Results showed that adding the organic compound to the chloride contaminated concrete pore solution decreased the corrosion rate of the steel rebar thanks to the effective adsorption of inhibitor molecules. After 30 days of immersion of steel rebar in inhibited chloride contaminated synthetic concrete pore solution, the inhibition efficiency exceeded 80% at low concentration of 1 mmol/L. Computational studies by Density Functional based Tight Binding (DFTB) method revealed the formation of covalent bonds between the hydrazone molecule and the iron surface.

  • PDF

Structural Characterization of the Intermetallic Phase EuZnxIn4-x (x ≈ 1.1-1.2). Zn and In Site-Preferences in the BaAl4 Structure-Type from Computational Analysis

  • You, Tae-Soo;Nam, Gnu;Kim, Youngjo;Darone, Gregory M.;Bobev, Svilen
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1656-1662
    • /
    • 2013
  • The ternary phase $EuZn_xIn_{4-x}$ has been identified as the main product of reactions of Eu, Zn, and In by using the In-flux method and characterized by both powder and single-crystal X-ray diffraction. The structure belongs to the common $BaAl_4$-type (tetragonal space group I4/mmm, Pearson code tI10) with lattice parameters of a = 4.5610(9) ${\AA}$, c = 12.049(3) ${\AA}$ for composition $EuZn_{1.10(12)}In_{2.90}$ and a = 4.5463(3) ${\AA}$, c = 12.028(2) ${\AA}$ for composition $EuZn_{1.18(2)}In_{2.82}$, respectively. In this structure, the Eu atoms are situated at the center of 18-vertex Fedorov polyhedra made of Zn and In atoms, where the 4d site is preferentially occupied by In and the 4e site is occupied by randomly mixed Zn and In atoms. Theoretical investigations using tight-binding linear muffintin orbital (TB-LMTO) method provide rationale for the observed site preferences and suggest potentially wider homogeneity range than the experimentally established for $EuZn_xIn_{4-x}$ ($x{\approx}1.1$).

Electron transport properties of Y-type zigzag branched carbon nanotubes

  • MaoSheng Ye;HangKong, OuYang;YiNi Lin;Quan Ynag;QingYang Xu;Tao Chen;LiNing Sun;Li Ma
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.263-275
    • /
    • 2023
  • The electron transport properties of Y-type zigzag branched carbon nanotubes (CNTs) are of great significance for micro and nano carbon-based electronic devices and their interconnection. Based on the semi-empirical method combining tight-binding density functional theory and non-equilibrium Green's function, the electron transport properties between the branches of Y-type zigzag branched CNT are studied. The results show that the drain-source current of semiconducting Y-type zigzag branched CNT (8, 0)-(4, 0)-(4, 0) is cut-off and not affected by the gate voltage in a bias voltage range [-0.5 V, 0.5 V]. The current presents a nonlinear change in a bias voltage range [-1.5 V, -0.5 V] and [0.5 V, 1.5 V]. The tangent slope of the current-voltage curve can be changed by the gate voltage to realize the regulation of the current. The regulation effect under negative bias voltage is more significant. For the larger diameter semiconducting Y-type zigzag branched CNT (10, 0)-(5, 0)-(5, 0), only the value of drain-source current increases due to the larger diameter. For metallic Y-type zigzag branched CNT (12, 0)-(6, 0)-(6, 0), the drain-source current presents a linear change in a bias voltage range [-1.5 V, 1.5 V] and is symmetrical about (0, 0). The slope of current-voltage line can be changed by the gate voltage to realize the regulation of the current. For three kinds of Y-type zigzag branched CNT with different diameters and different conductivity, the current-voltage curve trend changes from decline to rise when the branch of drain-source is exchanged. The current regulation effect of semiconducting Y-type zigzag branched CNT under negative bias voltage is also more significant.