• Title/Summary/Keyword: tidal power

Search Result 354, Processing Time 0.026 seconds

The design for automatic operation of Tidal power generation equipment (조력발전설비 자동기동 및 최대출력 운전 설계)

  • Kang, D.H.;Kim, J.D.;Him, J.L.;Shin, A.C.;Oh, M.H.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2579-2581
    • /
    • 2005
  • The Tidal Power Plant Management is defined to devise the optimum operating plan and control generating output automatically to obtain maximum production by using adaptive control method. The method to use tidal level observation results is suggested as two(2) kinds of manner, that is the two(2) layer design method by power model simulation and power automatic control.

  • PDF

Numerical Investigation on the Water Discharge Capability of Tidal Power Plant Using CFD (CFD를 사용한 조력발전소 수문의 통수성능 연구)

  • Kim, Gunwoo;Oh, Sangho;Han, Insuk;Ahn, Sukjin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.161-161
    • /
    • 2011
  • The design methodology of the sluice caisson structure is one of important factor that is closely related to the efficiency in tidal power generation. When the sluice caisson is designed to maximize the water discharge capability, it is possible to minimize the number of sluice caissons for attaining the water amount required for achieving the target power generation, which results in reduction of the construction cost for the sluice caisson structure. The discharge capability of sluice caisson is dependent on the geometrical conditions of an apron structure which is placed in both sides of the sluice caisson. In this study, we investigated numerically the variation of water discharge capability of sluice caisson according to the geometrical conditions of apron. Flow fields are simulated with FLOW-3D software using VOF method.

  • PDF

Design of Horizontal Axis Tidal Current Power Turbine with Wake Analysis (수평축 조류발전 터빈 설계 및 후류 특성 분석)

  • Jo, Chul-Hee;Kim, Do-Youb;Lee, Kang-Hee;Rho, Yu-Ho;Kim, Kook-Hyun
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.92-100
    • /
    • 2011
  • With the increased demand of clean energy and global warming measures, the renewable energy development has been increased recently. The TCP (Tidal Current Power) is one of the ocean renewable energy sources. Having the high tidal energy source in Korea, there are many potential TCP sites with strong current speed. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system. The rotor performance is determined by various design parameters including number of blades, shape, sectional size, diameters and etc. However, the interactions between devices also contribute significantly to the energy production. The rotor performance considering the interaction needs to be investigated to predict the exact power in the farm. This paper introduces the optimum design of TCP turbine and the performance of devices considering the interference between rotors.

Physical Experiment on Water Discharge Capability of Sluice Caisson for Tidal Power Plant (조력발전용 수문케이슨의 통수성능에 관한 수리모형실험)

  • Lee, Dal-Soo;Oh, Sang-Ho;Yi, Jin-Hak;Park, Woo-Sun;Cho, Hyyu-Sang;Ahn, Suk-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.514-517
    • /
    • 2008
  • An hydraulic experiment was carried out in an open channel flume in order to investigate the water discharge capability of the sluice caisson for tidal power generation, which greatly affects the economical efficiency of the construction of a tidal power plant. To predict the influence of change in the major design parameters relating to the sluice shape on the water discharge capability of the sluice, the experiment was carried out very precisely. The experiment was carried out for the six different sluice models of different widths and bottom heights of the sluice throat section. The experimental data showed that the water discharge generally increased by increasing the width of the throat section if the side shape of the sluice was the same. In addition, the coefficient of discharge was larger when the bottom height of the throat section was higher for the two bottom heights that were tested.

  • PDF

A Design of 10 kW Class Counter-Rotating Tidal Turbine Focusing on the Improvement of Operating Performance (성능계수 향상을 위한 10 kW급 상반전 조류터빈의 설계)

  • Hoang, Anh Dung;Kim, Bu-Gi;Kim, Jun-Ho;Yang, Chang-Jo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.53-59
    • /
    • 2015
  • Tidal turbine, which is relatively similar to wind turbine in term of operational principle, has become a potential solution for the sustainable development of global energy. This paper introduces author's work on tidal turbine which aims to improve the power efficiency by the adaption of counter-rotating concept. The turbine system is modelled and analyzed using computational simulation commercial code. Compared with other works, the counter-rotating tidal turbine presented here is expected to operate stably with high performance throughout a wide range of tip-speed-ratio. Moreover, the equability of individual performance of each rotor is an advantage.

Derivation of Candidate Sites for a Tidal Current-Pumped Storage Hybrid Power Plant Using GIS-based Site Selection Analysis (GIS기반 적지분석을 통한 조류-양수 융합발전시스템 설치후보지 도출 연구)

  • LEE, Cholyoung;CHOI, Hyun-Woo;PARK, Jinsoon;KIM, Jihoon;PARK, Junseok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.184-207
    • /
    • 2020
  • This study aimed to determine candidate areas for tidal current-pumped storage hybrid power plants using GIS-based site selection analysis. The study area is the southwestern sea surrounding Jindo Island in South Korea. Factors to be considered for the site selection analysis were derived considering the design and installation characteristics of the hybrid power plant. Numerical simulation to predict tidal speed was performed using the MOHID(Modelo HIDrodin?mico) and the results were converted into spatial data. Subsequently, a GIS-based overlay analysis method proposed in this study was applied to derive the installation candidate area. A total of 10 regions were identified as candidate sites. Among them, it was determined that the power generator could be installed in relatively wide sea areas in Jindo, Seongnamdo, and Hajodo.

Effects of the Damping Ratios of Power Generators on Power Efficiency of an Ocean Renewable Energy Converter Utilizing Flow Induced Vibrations of Two Circular Cylinders (두 원형실린더의 유동유발진동 현상을 이용하는 해양신재생에너지 변환기의 발전 효율에 발전기의 감쇠비가 미치는 영향에 관한 연구)

  • Kim, Eun Soo;Park, Hongrae;Kim, Dong Hwi;Baek, Hyung-min;Bernitsas, Michael M.
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.31-40
    • /
    • 2020
  • Most countries in the world are trying to reduce the use of fossil fuels in the production of electricity and replace them with renewable energy technologies. In Korea, there are abundant ocean renewable energy sources that will play an important role in power generation in the future. This paper introduces a new tidal energy converter utilizing flow induced vibration (FIV), which can work efficiently, even in the currents slower than 1.0m/s. All tests were conducted at the Marine Renewable Energy Laboratory at the University of Michigan to examine the effects of the damping ratio of the electric generators on the power outputs and power efficiencies. In these tests, two identical circular cylinders were used, and passive turbulence controllers were applied to the surface of the cylinders to enhance the FIV. The experimental results showed that by using the two cylinders in the FIV, the power output and efficiency reached up to 31 W and 36%, respectively. In particular, the results showed that the power efficiency was higher at the relatively low flow speed (4

A Study on the Performance of an 100 kW Class Tidal Current Turbine (100 kW급 조류발전용 터빈의 성능에 관한 연구)

  • Kim, Bu-Gi;Yang, Chang-Jo;Choi, Min-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2012
  • As the problems of global warming are brought up recently, many skillful solutions for developing new renewable energy are suggested. One of the most remarkable things is ocean energy. Korea has abundant ocean energy resources owing to geographical characteristics surrounded by sea on three sides, thus the technology of commercialization about tidal current power, wave power is demanded. Especially, Tidal energy conversion system is a means of maintaining environment naturally. Tidal current generation is a form to produce electricity by installing rotors, generators to convert a horizontal flow generated by tidal current into rotating movement. According to rotor direction, a tidal current turbine is largely distinguished between horizontal and vertical axis shape. Power capacity depends on the section size crossing a rotor and tidal current speed. We therefore investigated three dimensional flow analysis and performance evaluation using commercial ANSYS-CFX code for an 100 kW class horizontal axis turbine for low water level. Then We also studied three dimensional flow characteristics of a rotating rotor and blade surface streamlines around a rotor. As a result, We found that torque increased with TSR, the maximum torque occurred at TSR 3.77 and torque decreased even though TSR increased. Moreover we could get power coefficient 0.38 at designed flow velocity.

Feasibility Study for Tidal Power Plant Site in Garolim Bay Using EFDC Model (EFDC모형을 이용한 가로림만의 조력발전 위치 타당성 검토)

  • Shin, Bum-Shick;Kim, Kyu-Han;Kim, Jong-Hyun;Baek, Seung-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.489-495
    • /
    • 2011
  • Fossil fuel energy has become a worldwide environmental issue due to its effect on global warming and depletion in its supply. Therefore, the interest in developing alternative energy source has been rising. Ocean energy, especially, has gained strength as an alternative energy source for its unlimited supply with low secondary risks. Among all the ocean energy, the west coast of Korea holds the field of large-scale energy development because of its distinctive tidal range. Tidal power plant construction at the sea may expedite multi development effects such as bridge roles, tourism resource effects and adjustability of flood inundation at the inner bay. This study introduces the validity of tidal power plant construction at Garilim Bay in west coast of Korea by examining anticipated hydraulic characteristics using EFDC model. Through EFDC numerical simulations, the feasibility of Garolim Bay as a tidal power plant field has been proved. And the most effective tidal power plant construction would be to install hydraulic turbine in the west side of bay entrance where ebb current is stronger, and install water gate in the east side of bay entrance where the flood current is superior.

Tidal Farming Optimization around Jangjuk-sudo by Numerical Modelling

  • Nguyen, Manh Hung;Jeong, Haechang;Kim, Bu-Gi;Yang, Changjo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.54-62
    • /
    • 2016
  • This study presents an approach of tidal farming optimization using a numerical modelling method to simulate tidal energy extraction for 1MW scale tidal stream devices around Jangjuk-sudo, South Korea. The utility of the approach in this research is demonstrated by optimizing the tidal farm in an idealized scenario and a more realistic case with three scenarios of 28-turbine centered tidal array (named A, B and C layouts) inside the Jangjuk-sudo. In addition, the numerical method also provides a pre-processing calculation helps the researchers to quickly determine where the best resource site is located when considering the position of the tidal stream turbine farm. From the simulation results, it is clearly seen that the net energy (or wake energy yield which includes the impacts of wake effects on power generation) extracted from the layout A is virtually equal to the estimates of speed-up energy yield (or the gross energy which is the sum of energy yield of each turbine without wake effects), up to 30.3 GWh/year.