• Title/Summary/Keyword: tidal mixing

Search Result 132, Processing Time 0.04 seconds

A Study on the Salinity Variation of Salt Water in an Estuary (하구(河口)의 해수(海水)의 염도변동(鹽度變動)에 관한 연구(研究) - 군산외항(群山外港)부근을 중심(中心)으로 -)

  • Lee, Jong Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1981
  • Since the estuary is a very complex place in which the sea water and the fresh water meet, it is very difficult to make a general analytical description of salinity distribution in the estuary. As an attempt to investigate the characteristics of salinity variation in the estuary of the Geum River, the field observations were continuously carried out at three points near the Gunsan New Harbor at the time intervals 1 to 1.5 hours during one tidal cycle and the data were analysed. The following results were obtained; 1. It was reconfirmed that most of the ratios of the salinity to the conductivity were widely distributed between the range of 0.5 to 1.0. 2. The salinity showed the peak at the high water, and then it began to decrease gradually and had the lowest value 0 to 2 hours after the low water. 3. The density current was generally the intense mixing type and when the river discharge was very large it was of the moderate type. 4. The vertical salinity distribution was not significantly affected by the wave height. 5. The maximum vertical salinity differences were generally less than 10 g/l and the time of the occurrence of the minimum value was 0 to 3 hours after the low water when in the spring tide and in the neap tide it occurred 2 to 3 hours after the high water.

  • PDF

A numerical study on the dispersion of the Yangtze River water in the Yellow and East China Seas

  • Park, Tea-Wook;Oh, Im-Sang
    • Journal of the korean society of oceanography
    • /
    • v.39 no.2
    • /
    • pp.119-135
    • /
    • 2004
  • A three-dimensional numerical model using POM (the Princeton Ocean Model) is established in order to understand the dispersion processes of the Yangtze River water in the Yellow and East China Seas. The circulation experiments for the seas are conducted first, and then on the bases of the results the dispersion experiments for the river water are executed. For the experiments, we focus on the tide effects and wind effects on the processes. Four cases of systematic experiments are conducted. They comprise the followings: a reference case with no tide and no wind, of tide only, of wind only, and of both tide and wind. Throughout this study, monthly mean values are used for the Kuroshio Current input in the southern boundary of the model domain, for the transport through the Korea Strait, for the river discharge, for the sea surface wind, and for the heat exchange rate across the air-sea interface. From the experiments, we obtained the following results. The circulation of the seas in winter is dependent on the very strong monsoon wind as several previous studies reported. The wintertime dispersion of the Yangtze River water follows the circulation pattern flowing southward along the east coast of China due to the strong monsoon wind. Some observed salinity distributions support these calculation results. In summertime, generally, low-salinity water from the river tends to spread southward and eastward as a result of energetic vertical mixing processes due to the strong tidal current, and to spread more eastward due to the southerly wind. The tide effect for the circulation and dispersion of the river water near the river mouth is a dominant factor, but the southerly wind is still also a considerable factor. Due to both effects, two major flow directions appear near the river mouth. One of them is a northern branch flow in the northeast area of the river mouth moving eastward mainly due to the weakened southerly wind. The other is a southern branch flow directed toward the southeastern area off the river mouth mostly caused by tide and wind effects. In this case, however, the tide effect is more dominant than the wind effect. The distribution of the low salinity water follows the circulation pattern fairly well.

VARIATIONS OF SEA SURFACE TEMPERATURE BETWEEN JEJU AND MOGPO AND BETWEEN JEJU AND WANDO (제주와 목포, 제주와 완도간의 표면수온 변화)

  • Rho, Hong Kil;Kim, Kuh
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.64-72
    • /
    • 1983
  • A series of sheps-of-opportunity sea sryface temperature (SST) measurement beween Jeju and Wando during a period from December 1979 through June 1981 produced following results. 1. A sihnificantly warm water appeared south of Chuja Island and Cheongsan Island during Island. It is suggested that this water represents a current entering the Jeju Strait from the west. Direction of this currint in other seasons is not certain. 2. Coastal waters were found north of the Cheongsan Island and Bogil Islhnd throughout the measurement period. In February these waters sometimes reached as far as Chuja Island to south. 3. Frequently thermal fronts were observed near the Chuja Island and the Cheongsan Island. 4. In summer cold waters appeared north of the Chuja Island and Changsu Island. Intrusion of cold bottom water from offshore and its subsequent vertical mixing due to strong tidal current are probably reponsible for this appearance. 5. Cold waters also appeared locally around islands and in ghe Jeju Harbor in spring and summer. 6. North-south SST difference reached 8-9$^{\circ}C$ in winter which is the annual maximum. 7. Annual range of SST varies from 12-14$^{\circ}C$ in the central part of the Jeju Strait to 16-20$^{\circ}C$ in coastal waters to north. The highest SST appeared everywhere in September but the lowest one did not appesr in the same month of year.

  • PDF

Marine Environments and Production of Laver Farm at Aphae-do Based on Water Quality and Phytoplankton Community (수질환경과 식물플랑크톤 군집 변화에 의한 압해도 김 양식장의 해양환경과 생산)

  • Yoon, Yang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.3
    • /
    • pp.159-167
    • /
    • 2014
  • In this study, I examined the water quality and phytoplankton community in aquaculture laver farm in the southwest part of Aphae-do, South Korea, based on the young leaf stage, middle leaf stage, and adult leaf stage of laver thallus from October, 2013 to January, 2014. It was observed that the Aphae laver farm, as located in shallow waters, was found to have a serious resuspsension of the surface sediments due to physical disturbance caused by winds and tidal mixing. Such a resuspension of surface sediments coupled with nutrients supply obstructs light penetration into the sea for its huge amount of total suspended matters. As a result for this reason, it was viewed toimpedthe growth of phytoplankton was impeded as it also competes with laver to absorb the same kinds of nutrients as laver does during the laver growth period in winter. Such elements of the marine environment in Aphae laver farm are in contrast with the environment of Japan, where nutrients including dissolved inorganic nitrogen, in particular, are insufficient to cause the recent laver bad harvest, discoloration and quality degradation while large diatoms, with their higher nutrients absorption efficiency than laver, generate winter red tide. In other words, an important factor to maintain the high laver production in the southern parts of West Sea of Korea was found to be the marine environment of its laver farms where large diatoms are prevented from growing due to nutrients supply and dense seston weights from resuspended matters by physical disturbances.

The variational characteristics of Water Quality and Chlorophyll a Concentration in Kogum-sudo, Southern Part of Korean Peninsula (거금수도 양식어장의 해양환경 특성 2. 수질과 엽록소 양의 변동특성)

  • 윤양호;박종식;고남표
    • Journal of Aquaculture
    • /
    • v.13 no.1
    • /
    • pp.87-99
    • /
    • 2000
  • Field survey on the variational characteristics of water quality and chlorophyll a concentraion were carried out at the 25 stations for four seasons in Kogum-sudo(Straits) southern coast of Korean Peninsula from Feburuary to October in 1993. We made an analysis on biological factor as chlorophyll a concentraion as well as physicio-chemical factors such as water temperature salinity sigma-t transparency dissolved oxygen(DO) chemical oxygen demand(COD) nutrients (ammonia, nitrite, nitrate, phosphate, and silicate) N/P ratio and suspended solid(SS). The waters in the Kogum-sudo were not stratified due to the tidal mixing. And the high productivity in photic layer were supported by high nutrients concentration from bottom waters. The high concen-trations of suspended solid in straits had a bad influence upon marine biology of nature and cultivations. In Kogum-sudo had a sufficient nutrients for primary productivity during a year. Especially phosphate and inorganic nitrogen were high the other side silicate was very low. The source of nutrients supply depend on rather mineralization of organic matters and input of seawater from outside than input of freshwaters from lands. Phytoplankton biomass as measured by chlorphyll a concentratiion was very high all the year round and it was controlled by the combination o f several environmental factors especially of phosphate in summer and dissolved nitrogen in other seasons.

  • PDF

Development of a Three-Dimensional, Semi-Implicit Hydrodynamic Model with Wetting-and-Drying Scheme (조간대 처리기법을 포함한 3차원 Semi-Implicit 수역학모델 개발)

  • Lee, Kyung-Sun;Park, Kyeong;Oh, Jeong-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.70-80
    • /
    • 2000
  • Princeton Ocean Model (POM) is modified to construct a three-dimensional, semi-implicit hydro¬dynamic model with a wetting-and-drying scheme. The model employs semi-implicit treatment of the barotropic pressure gradient terms and the vertical mixing terms in the momentum equations, and the velocity divergence term in the vertically-integrated continuity equation. Such treatment removes the external mode and thus the mode splitting scheme in POM, allowing the semi-implicit model to use a larger time step. Applied to hypothetical systems, both the semi-implicit model and POM give nearly the same results. The semi-implicit model, however, runs approximately 4.4 times faster than POM showing its improved computational efficiency. Applied to a hypothetical system with intertidal flats, POM employing the mode splitting scheme produces noises at the intertidal flats, that propagate into the main channel resulting in unstable current velocities. Despite its larger time step, the semi-implicit model gives stable current velocities both at the intertidal flats and main channel. The semi-implicit model when applied to Kyeonggi Bay gives a good reproduction of the observed tides and tidal currents throughout the modeling domain, demonstrating its prototype applicability.

  • PDF

Characteristics of Surface Sedment and Seasonal Variation of Suspended Sediment in the Masan Bay, South Coast of Korea (한국 남해 마산만의 표층퇴적물 특성과 부유퇴적물의 계절별 변화 양상)

  • Choi, Jae Ung;Woo, Han Jun;Choi, Dong Lim;Lee, Tae Hee
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.67-77
    • /
    • 2006
  • Sedimentological investigations on surface and suspended sediments were performed in Masan Bay of the South Sea in order to reveal recent changes in depositional environments concerning anthropogenic influence. Surface sediments had been classified as 3 sediment facies: mud, slightly gravelly mud, and gravelly mud. In general, mud facies with more than 60% of silt is predominant and slightly gravelly mud facies occurs at the watercourse of bay's central area. The silt-dominant mud faices appears to be predominant before and after dredging. Temperature and salinity changes during one tidal cycle for each season suggest that water columns were stratified without vertical mixing regardless of the season due to weak intensity of tide from the effect of geographical features. The effect of freshwater discharge from the land seems to be insignificant. The strongest current was observed during ebb tide in spring and autumn while observed during flood tide in summer and winter. Net sediment flux (fs) and net suspended sediment transport (Qs) for suspended sediment were determined by remaining drift developed here. Net suspended sediment transport loads were seaward with $62.02{\times}10^3kgm^{-1}$, $31.84{\times}10^3kgm^{-1}$ in spring and fall, respectively, and landward with $18.23{\times}10^3kgm^{-1}$, $3.22{\times}10^3kgm^{-1}$ in summer and winter, respectively.

  • PDF

Comparison of Sea Surface Temperature from Oceanic Buoys and Satellite Microwave Measurements in the Western Coastal Region of Korean Peninsula (한반도 서해 연안 해역에서의 해양 부이 관측 수온과 위성 마이크로파 관측 해수면온도의 비교)

  • Kim, Hee-Young;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.555-567
    • /
    • 2018
  • In order to identify the characteristics of sea surface temperature (SST) differences between microwave SST from GCOM-W1/AMSR2 and in-situ measurements in the western coast of Korea, a total of 6,457 collocated matchup data were produced using the in-situ temperature measurements from marine buoy stations (Deokjeokdo, Chilbaldo, and Oeyeondo) from July 2012 to December 2017. The accuracy of satellite microwave SSTs was presented by comparing the ocean buoy data of Deokjeokdo, Chilbaldo, and Oeyeondo stations with the AMSR2 SST data more than five years. The SST differences between the microwave SST and the in-situ temperature measurements showed some dependence on environmental factors, such as wind speed and water temperature. The AMSR2 SSTs were tended to be higher than the in-situ temperature measurements during the daytime when the wind speed was low ($<6ms^{-1}$). On the other hand, they showed positive deviation increasingly as the wind speed increased for nighttime. In addition, increasing tendency of SST differences was related to decreasing sensitivity of microwave sensors at low temperatures and data contamination by land. A monthly analysis of the SST difference showed that unlike the previous trend, which was known to be the largest in winter when strong winds were blowing, the SST difference was largest in summer in Deokjeokdo and Chilbaldo buoy stations. This seemed to be induced by differential tidal mixing at the collocated matchup points. This study presented problems and limitations of the use of microwave SSTs with high contribution to the SST composites in the western coastal region off the Korean peninsula.

Environmental Characteristics and Catch Fluctuations of Set Net Ground in the Coastal Water of Hanlim in Cheju Island I. Properties of Temperature and Salinity (제주도 한림 연안 정치망어장의 환경특성과 어획량변동에 관한 연구 I. 수온 및 염분특성)

  • KIM Jun-Teck;JEONG Dong-Gun;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.859-868
    • /
    • 1998
  • In order to investigate the relation between the marine environmental characteristics and the change of the catch in set net, the marine environment properties were analyzed by temperature and salinity observed in the western coastal area of Cheju Island from 1995 to 1996 and the results are as follows 1) Main axis of Tsushima Current appeared in the western coastal area of Cheju Island was off 2$\~$3 miles from November to May. Therefore the waters of high temperature over $14^{\circ}C$ and high salinity from $34.40\%_{\circ}$ to $34.60\%_{\circ}$ were distributed homogeneously from surface to bottom in this time. But China Coastal Waters of low salinity appeared in the Cheju Strait from June to October, surface waters became of high temperature and low salinity, and middle and bottom waters became of the temperature from 11 to $14^{\circ}C$ and the salinity over $33.50\%_{\circ}$ and then vertically sharp thermocline and halocline are formed in the western coastal area of Cheju Island. In summer, the water temperature and salinity of the surface waters in wstern coastal area of Cheju Island were lower and higher respectively than that in middle area of the Cheju Strait and the temperature and salinity of the bottom waters in this area were higher and lower, respectively than that in middle area of the Cheju Strait. Such a distribution shows a tidal front in this coastal area. On the whole year, surface temperature and salinity were from 14 to $23^{\circ}C$ and from 30.60 to $34.60\%_{\circ}$, respectively, and annual fluctuation range of temperature and salinity was within $9^{\circ}C$ and $4.00\%_{\circ}$, respectively, Thus, annual fluctuation range in this area is much narrower than that in the Cheju Strait. In bottom water, temperature ranges from 14 to $20^{\circ}C$ through the year. Thus, the fluctuation range of temperature is narrow. The low temperature of from $11^{\circ}C$ to $13^{\circ}C$ appeared in the west enterance of Cheju Strait was not shown in this coastal area. 2) The salinity of bottom water was from $33.60\%_{\circ}$ to $34.40\%_{\circ}$ in 1995, while low salinity wale. below $32.00\%_{\circ}$ appeared all depth from June in 1996. Thus, the variation of hydrographic conditions in this area is narrow in winter, and wide in summer due to the influence of China Coastal Waters. 3) In summer, surface cold water, local eddy and fronts of temperature and salinity were showed within 2 mile from the west coast of the Cheju Island due to vertical mixing by tidal current. Especially, temperature and salinity of bottom water are changed with the change of depth around Biyang-Do. Thus, the front of temperature and salinity appeared clearly between shallow area with the depth of under 10 m and deep area with of the depth of more than 50m. Surface water in outside area where high temperature and low salinity water appear intrudes between Worlreong-Ri and Geumreung-Ri. Thus, the front of temperature and salinity was made along the line that connects from this coast to Biyang-Do, The temperature of the bottom water is $2^{\circ}C$ to $4^{\circ}C$ lower than that of the surface water and its salinity is $0.02\%_{\circ}$ to $0.08\%_{\circ}$ higher than that of the surface water even in shallow area.

  • PDF

Estimation of the Freshwater Advection Speed by Improvement of ADCP Post-Processing Method Near the Surface at the Yeongsan Estuary (ADCP 표층유속 자료처리방법 개선을 통한 영산강 하구 표층 방류수 이류속도 산정)

  • Shin, Hyun-Jung;Kang, Kiryong;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.180-190
    • /
    • 2014
  • It has been customary to exclude top 10-20% of velocity profiles in the Acoustic Doppler Current Profiler (ADCP) measurement due to side lobe effects at the boundary. To better understand the mixing in the Yeongsan estuary, the freshwater advection speed (FAS) was recovered from highly contaminated ADCP data near the surface. The velocity profiles were measured by using ADCP at two stations in the Yeongsan estuary during August 2011: one was located in front of the Yeongsan estuarine dam and the other was deployed near Goha Island. The FAS was recovered from the ADCP data set by applying rigorous post-processing methods and compared with the sediment advection speed (SAS). The SAS was determined by the peak time difference of suspended sediment concentration between two stations in the channel, divided by the distance of two stations. The FAS and the SAS showed very similar value when the freshwater discharge was greater than $2.0{\times}10^7$ ton and the SAS was a bit greater when the freshwater discharge was smaller. Since the FAS was on average about 0.8 m/s greater than the velocity at 0.8 of water depth from the bottom, the net discharge, estimated with recovered FAS and integrated over water depth and tidal cycle, was directed seaward during the high discharge contrary to the onshore direction of the net discharge estimated with 0.8 of water depth from the bottom. Moreover, the velocity shear and Richardson number changed when the FAS was used. Thus, the importance of the true FAS is appreciated in the investigation of the surface layer stability. If currents, temperature and salinity were observed for longer time in the future, it could be possible to more accurately understand the formation and decay of stratification as well as the suspended sediment transport processes.