• Title/Summary/Keyword: tidal level

Search Result 555, Processing Time 0.024 seconds

A Study on the Long-Term Variations of Annual Maximum Surge Heights at Sokcho and Mukho Harbors (속초와 묵호항의 연간 최대해일고의 장기간 변동성에 대한 고찰)

  • Kwon, Seok-Jae;Moon, Il-Ju;Lee, Eun-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.564-574
    • /
    • 2008
  • This study investigates a long-term variation of annual maximum surge heights(AMSH) and main characteristics of high surge events, which is influenced by the global warming and intensifying typhoons, using sea level data at Sokcho and Mukho tidal stations over 34 years ($1974{\sim}2007$). It is found that the there is a longterm uptrend of the AMSH at Sokcho (8.3 cm/34yrs) and at Mukho (8.7 cm/34yrs), which is significant within 95% confidence level based on the linear regression. The statistical analysis reveals that 53% of the AMSH occurs during typhoon's event in both tidal stations and the highest surge records are mostly produced by the typhoon. It is concluded that the uptrend in the AMSH is attributed by the increasing typhoon activities globally as well as locally in Korea due to the increased sea surface temperature in tropical oceans. The continuous efforts monitering and predicting the extreme surge events in the future warm environments are required to prevent the growing storm surge damage by the intensified typhoon.

Unsteady Flow Analysis by the Looped Network Channel Model (폐합형수계 모형에 의한 부정류 해석)

  • Park, Bong-Jin;Lee, Hwan-Ki;Jung, Kwan-Sue
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.129-138
    • /
    • 1996
  • Loopnet model was developed to simulate unsteady flow in the looped network channel, considering change of the time and space. In this study, the looped solution algorithm was derived and the accuracy and stability of the model was tested. The Gulpo river system was used to calculate the flood water levels considering the hydraulic structures, tidal effect and inflow hydrographs. The result of the simulation showed that the accuracy and stability of this model was reliable. The change of flood water level of the Gulpo River system and the spillway section were not greatly affected by the operation water level of the navigation channel. But this analysis showed that roughness was one of the very important physical factor in changing flood water level.

  • PDF

Effect of a Barrier on Tides in the Youngsan Estuary (영산강하구(榮山江河口)의 방조제건설(防潮堤建設) 조위변화(潮位變化))

  • Choi, Byoung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.113-124
    • /
    • 1984
  • This study represents results of analysis of sea level record at Mokpo for the years 1956~1982. The results are believed to be the first detailed analysis for the Port of Mokpo. The tidal constants are obtained from separate yearly extended harmonic analysis. The variability of these yearly analysis gives estimates of effects on astronomical tide due to Youngsan Barrier. Multiple statistics of sea level record for the years 1965~1980 and 1981~1982 are presented separately to evaluate the distribution of sea level frequency due to the construction of Barrier. Some of preliminary results are presented and indication of further studies are discussed.

  • PDF

Present Condition and Improvement points research for Shoreline Investigation Survey in Korea (우리나라 해안선조사측량 추진현황 및 개선점 연구)

  • Wie, Gwang-Jae;Kim, Eyung-Young;Sung, No-Sun;Lim, Young-Tae
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.403-406
    • /
    • 2010
  • Shoreline Investigation Survey in Korea 2001 Taean ended 2009 Tongyeong with start, Gosung in 2010 to survey the shoreline plans to complete the survey. Shoreline Investigation Survey of the country shape formulation and accurate coastline produced to by 2007 baseline survey, level survey, the terrain level survey, water level survey, tidal observations, property survey, etc was conducted. Since 2007 the status of topography survey were performed by replacing the Airborne LiDAR survey. In this research study surveying the shoreine of the business status, issues, improvements in the updated plan to analyze the shoreline land department future research and surveying the shoreline Island department plan is presented.

  • PDF

A Study of Damage District Forecast by Combine Topograph Modeling of Insular Areas Using GIS

  • Choi, Byoung Gil;Na, Young Woo;Ahn, Soon Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.2
    • /
    • pp.113-122
    • /
    • 2017
  • Natural disasters caused by climate change are increasing globally. There are few studies on the quantitative analysis methods for predicting damages in the island area due to sea level rise. Therefore, it is necessary to study the damage prediction analysis method using the GIS which can quantitatively analyze. In this paper, we analyze the cause and status of sea level rise, quantify the vulnerability index, establish an integrated terrestrial modeling method of the ocean and land, and establish a method of analyzing the damage area and damage scale due to sea level rise using GIS and the method of making the damage prediction figure was studied. In order to extract the other affected areas to sea level rise are apart of the terrain model is generated by one requires a terrain modeling of target areas are offshore and vertical reference system differences in land, found the need for correction by a tidal observations and geoid model there was. Grading of terrain, coastline erosion rate, coastal slope, sea level rise rate, and even average by vulnerable factors due to sea level rise indicates that quantitative damage prediction is possible due to sea level rise in the island area. In the case of vulnerable areas extracted by GIS, residential areas and living areas are concentrated on the coastal area due to the nature of the book area, and field survey shows that coastal changes and erosion are caused by sea level rise or tsunami.

Sea Level Change during the Middle Holocene at Bibong-ri, Changnyeong-gun, Gyeongsangnam-do, South Korea (창녕 비봉리 지역의 Holocene 중기 해수면변동)

  • Hwang, Sangill;Kim, Jeong-Yun;Yoon, Soon-Ock
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.6
    • /
    • pp.837-855
    • /
    • 2013
  • The remains and relics such as wood vessel, shell middens and acorn hollows related to marine environments were excavated at Bibong-ri, Changnyeong-gun, Gyeongsangnam-do, South Korea, approximately 70km apart from the Nakdong River mouth. The sea-level changes were reconstructed based on characteristics of shell middens and acorn hollows, sedimentary facies, AMS dating, and diatom analysis. The shell middens and acorn hollows were constructed during the early Neolithic Age and provide information on the paleo-sea level, because of influences of marine processes. The sedimentary facies are classified into a bedrock, base gravel and Holocene sediment (marine, terrestrial and back marsh sediments), upward. The sea level fluctuated during the middle Holocene is in harmony with those in Sejuk-ri, Ulsan and Pyeongtaek. In particular, the sea level at Bibong-ri of study area was higher than the mean high tidal level in Gimhae by approximately 1m during 5,000yr BP and maintained the stable condition during 4,000yr BP.

  • PDF

Impacts of sea-level rise on port facilities

  • Son, Chang-Bae;Kim, Chang-Je;Jang, Won-Yil;Matsubara, Yuhei;Noda, Hedeaki;Kim, Mi-Kum
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.173-177
    • /
    • 2006
  • From the viewpoint of coastal hydrodynamics, one of the most important effects of global warming is a sea-level rise in coastal areas. In the present study, impacts on port facilities against sea-level rise were investigated. The sea-level rise causes the increase of the water depth, and it generates variations on the wave height, buoyancy, tidal system and nearshore current system and so on. The increase of water depth gives rise to the decrease of crown height of the structure and it causes increase of wave overtopping quantity. It may flood the port zone and its facilities, and may decrease harbor tranquility. It also leads to difficulties on navigation, mooring and loading/unloading at the port. Increase in water depth also causes increase of wave height in surf zone. This high wave makes structures unstable and may cause them to collapse during storm. In addition, increase in buoyant force due to sea-level rise also makes the gravity type structures unstable. Consequently, theses variations due to sea-level rise will cause functional deterioration of port facilities. In order to protect port facilities from the functional deterioration, reinforcement plan is required such as raising the crown height and increase in block weight and so on. Hence proper estimation method for the protection cost is necessary in order to protect port facilities efficiently. Moreover response strategies and integrated coastal zone management plan is required to maintain the function of port facilities. A simple estimation of cost for breakwaters in Korea was performed in the present study.

  • PDF

Adaptive Sea Level Prediction Method Based on Harmonic Analysis (조화분석에 기반한 적응적 조위 예측 방법)

  • Park, Sanghyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.276-283
    • /
    • 2018
  • Climate changes consistently cause coastal accidents such as coastal flooding, so the studies on monitoring the marine environments are progressing to prevent and reduce the damage from coastal accidents. In this paper, we propose a new method to predict the sea level which can be applied to coastal monitoring systems to observe the variation of sea level and warn about the dangers. Existing sea level models are very complicated and need a lot of tidal data, so they are not proper for real-time prediction systems. On the other hand, the proposed algorithm is very simple but precise in short period such as one or two hours since we use the measured data from the sensor. The proposed method uses Kalman filter algorithm for harmonic analysis and double exponential smoothing for additional error correction. It is shown by experimental results that the proposed method is simple but predicts the sea level accurately.

Comparison of Topex/Poseidon sea levels data and Tide Gause sea levels data from the South Indian Ocean (남인도양에서의 해수면에 대한 위성자료(Topex/Poseidon 고도계)와 현장자료(Tide Gauge 해면계)간의 비교)

  • 윤홍주;김상우;이문옥;박일흠
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • According to standard procedures as defined in the users handbook for sea level data processes, I was compared to Topex/poseidon sea level data from the first 350days of mission and Tide Gauge sea level data from the Amsterdam- Crozet- Kerguelen region in the South Indian Ocean. The comparison improves significantly when many factors for the corrections were removed, then only the aliased oceanic tidal energy is removed by oceanic tide model in this period. Making the corrections and smoothing the sea level data over 60km along-track segments and the Tide Gauge sea level data for the time series results in the digital correlation and RMS difference between the two data of c=-0.12 and rms=11.4cm, c=0.55 and rms=5.38cm, and c=0.83 and rms=2.83cm for the Amsterdam, Crozet and Kerguelen plateau, respectively. It was also found that the Kerguelen plateau has a comparisons due to propagating signals(the baroclinic Rossby wave with velocity of -3.9~-4.2cm/sec, period of 167days and amplitude of 10cm) that introduce temporal lags($\tau$=10~30days) between the altimeter and tide gauge time series. The conclusion is that on timescales longer than about 10days the RMS sea level errors are less than or of the order of several centimeters and are mainly due to the effects of currents rather than the effects of sterics(water temperature, density) and winds.

  • PDF

Modeling the long-term vegetation dynamics of a backbarrier salt marsh in the Danish Wadden Sea

  • Daehyun Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.49-62
    • /
    • 2023
  • Background: Over the past three decades, gradual eustatic sea-level rise has been considered a primary exogenous factor in the increased frequency of flooding and biological changes in several salt marshes. Under this paradigm, the potential importance of short-term events, such as ocean storminess, in coastal hydrology and ecology is underrepresented in the literature. In this study, a simulation was developed to evaluate the influence of wind waves driven by atmospheric oscillations on sedimentary and vegetation dynamics at the Skallingen salt marsh in southwestern Denmark. The model was built based on long-term data of mean sea level, sediment accretion, and plant species composition collected at the Skallingen salt marsh from 1933-2006. In the model, the submergence frequency (number yr-1) was estimated as a combined function of wind-driven high water level (HWL) events (> 80 cm Danish Ordnance Datum) affected by the North Atlantic Oscillation (NAO) and changes in surface elevation (cm yr-1). Vegetation dynamics were represented as transitions between successional stages controlled by flooding effects. Two types of simulations were performed: (1) baseline modeling, which assumed no effect of wind-driven sea-level change, and (2) experimental modeling, which considered both normal tidal activity and wind-driven sea-level change. Results: Experimental modeling successfully represented the patterns of vegetation change observed in the field. It realistically simulated a retarded or retrogressive successional state dominated by early- to mid-successional species, despite a continuous increase in surface elevation at Skallingen. This situation is believed to be caused by an increase in extreme HWL events that cannot occur without meteorological ocean storms. In contrast, baseline modeling showed progressive succession towards the predominance of late-successional species, which was not the then-current state in the marsh. Conclusions: These findings support the hypothesis that variations in the NAO index toward its positive phase have increased storminess and wind tides on the North Sea surface (especially since the 1980s). This led to an increased frequency and duration of submergence and delayed ecological succession. Researchers should therefore employ a multitemporal perspective, recognizing the importance of short-term sea-level changes nested within long-term gradual trends.