• Title/Summary/Keyword: tibialis anterior muscle

Search Result 366, Processing Time 0.03 seconds

Characteristic Analysis of Lower Limbs Muscles in Young Normal Adults on a Tilting Bed Using an Unstable Platform (불안정판을 부착한 경사침대에서 하지운동 시 정상성인의 근력 특성 분석)

  • Yu, Mi;Lee, Sun-Yeon;Piao, Yong-Jun;Kim, Kyong;Jeog, Gu-Young;Kim, Jung-Ja;Kwon, Tae-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1425-1433
    • /
    • 2011
  • We investigated an early rehabilitation training system that increase the intensity of patient rehabilitation training to shorten the time it takes for patients to progress to a secondary rehabilitation training stage by allowing patients incapable of self-ambulation. It consisted of tilting bed, unstable platform using strong springs and training program for lower limb rehabilitation. We performed experimental study on the muscular activities of tibialis anterior(TA), soleus(SO), gastrocnemius(GA) in the lower extremities during training of straight line, circle, quardrangle pattern during tilting angle of $30^{\circ}$, $60^{\circ}$. The muscle activities were higher during tilting angle of $30^{\circ}$ than $60^{\circ}$. In straight line pattern, the muscle activities were higher by SO, GA and TA during medio-lateral direction, however, by TA, SO and GA during anterio-posterior direction. In circle and quardrangle pattern, the muscle activities were higher by TA, SO and GA during clockwise and counterclockwise direction. The results indicate that the early rehabilitation training system could be applied to improve the lower extremity muscular strength for elderly and patients, especially, stroke.

Immediate Effect of Neuromuscular Electrical Stimulation on Balance and Proprioception During One-leg Standing

  • Je, Jeongwoo;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.29 no.3
    • /
    • pp.187-193
    • /
    • 2022
  • Background: Neuromuscular electrical stimulation (NMES) is a physical modality used to activate skeletal muscles for strengthening. While voluntary muscle contraction (VMC) follows the progressive recruitment of motor units in order of size from small to large, NMES-induced muscle contraction occurs in a nonselective and synchronous pattern. Therefore, the outcome of muscle strengthening training using NMES-induced versus voluntary contraction might be different, which might affect balance performance. Objects: We examined how the NMES training affected balance and proprioception. Methods: Forty-four young adults were randomly assigned to NMES and VMC group. All participants performed one-leg standing on a force plate and sat on the Biodex (Biodex R Corp.) to measure balance and ankle proprioception, respectively. All measures were conducted before and after a training session. In NMES group, electric pads were placed on the tibialis anterior, gastrocnemius, and soleus muscles for 20 minutes. In VMC group, co-contraction of the three muscles was conducted. Outcome variables included mean distance, root mean square distance, total excursion, mean velocity, 95% confidence circle area acquired from the center of pressure data, and absolute error of dorsi/plantarflexion. Results: None of outcome variables were associated with group (p > 0.35). However, all but plantarflexion error was associated with time (p < 0.02), and the area and mean velocity were 37.0% and 18.6% lower in post than pre in NMES group, respectively, and 48.9% and 16.7% lower in post than pre in VMC group, respectively. Conclusion: Despite different physiology underlying the NMES-induced versus VMC, both training methods improved balance and ankle joint proprioception.

Comparison of Foot Muscle Activity During Short Foot and Toe Spread-out Exercises in Different Weight Bearing Conditions in Individuals With Pes Planus

  • Hyun-ji Lee;Sae-hwa Kim;Seung-min Baik;Heon-seock Cynn
    • Physical Therapy Korea
    • /
    • v.31 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Background: Individuals with pes planus tend to overuse the extrinsic foot muscles, such as the tibialis anterior (TA) and peroneus longus (PL), to compensate for the weakened intrinsic foot muscles, such as the abductor hallucis (AbdH). Furthermore, differences in weight-bearing can affect the activity of muscles in both the intrinsic and extrinsic foot muscles. To date, no study has compared the effects of the short foot exercise (SFE) and toe spread-out exercise (TSO) on intrinsic and extrinsic foot muscle activity and the corresponding ratios in different weight-bearing positions. Objects: To compare the effects of the SFE and TSO on AbdH, TA, and PL activity and the AbdH/TA and AbdH/PL activity ratios in the sitting and standing positions in individuals with pes planus. Methods: Twenty participants with pes planus were recruited. Surface electromyography was used to assess the amplitudes of AbdH, TA, and PL activity. Participants performed both exercises while adopting both the sitting and standing positions. Results: No significant interaction between exercise and position was found regarding the activity of any muscle or ratio of the activity, except for PL activity. We observed a significant increase in AbdH activity during the TSO compared to the SFE, and no significant difference in TA and PL activity between the two exercises. AbdH, TA, and PL activity were significantly higher in the standing position than in the sitting position. Furthermore, the AbdH/PL activity ratio significantly increased in the sitting position, although there was a significant increase in AbdH activity in the standing position. Conclusion: In individuals with pes planus, we recommend performing the TSO in the sitting position, which may increase the activity of the AbdH while concurrently decreasing the activity of the TA and PL, thus strengthening the AbdH.

Effects of Exercise Program by Type on Balance Ability and Muscle Activity In A Standing Posture (유형별 운동프로그램이 선 자세에서의 균형능력과 근활성도에 미치는 영향)

  • Kang, Jeong-Il;Park, Jun-Su;Park, Seung-Kyu;Yang, Dae-Jung;Choi, Hyun;Jeong, Dae-Keun;Kwon, Hye-Min;Moon, Young-Jun
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.411-418
    • /
    • 2014
  • This study, in order to establish the effect of three exercise groups on the static and dynamic balancing abilities and the muscular activity, targeting adult males aged 20-29, assigned 15 men to each aquatic exercise group, trunk stabilization exercise group, and balance exercise group. The study was conducted from June, 2013 to August, 2013, and measured and compared the balancing ability and the muscle activity(tibialis anterior and gastrocnemius muscle) of the participants after performing intervention for 30 minutes a day, 3 days a week, for 6 weeks. As a result, on the comparison between before and after the intervention, there were significant differences in changes of the surface area and the whole path length in all the three groups(p<.05)(p<.01), and also on the dynamic balance, there was a significant difference in change of limited of stability(p<.05)(p<.01). On change of the muscle activity of tibialis anterior, both left and right sides showed statistically significant differences in all the three groups(p<.05)(p<.01), and gastrocnemius muscle showed a statistically significant difference in all the three groups except for the left side of the trunk stabilization exercise group(p<.05)(p<.01). It could be established that aquatic exercise is effective for improvement of the balancing ability and increase of the muscular activity, and we intend to propose specific aquatic exercise program development by conducting a study to determine the objective effect of aquatic exercise on the elderly or patients who have a poor balancing ability.

Effect for Wellness of Blood Flow Restriction Aerobic Exercise Program - Focusing on Mscle Ativity and Mtor Nurons - (혈류제한 유산소운동 프로그램의 웰니스를 위한 효과검정 - 근활성도와 운동신경원을 중심으로 -)

  • Jeong, Dae-Keun;Kang, Jeong-Il;Jang, Jun-Min
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.7
    • /
    • pp.225-233
    • /
    • 2021
  • This study quantitatively compares and analyzes lower extremity muscle activity and motor neurons by performing blood flow-restricting aerobic training in the lower extremities, which is closely related to aerobic capacity for health, in normal people, and provides basic data to suggest the effectiveness of an effective blood-restricting exercise program. would like to provide A group of 10 people who applied aerobic exercise on a treadmill by restricting blood flow to 140 mmHg of pressure was set as Experimental Group I. And 11 people who applied only aerobic exercise on a treadmill were randomly assigned as a control group. The intervention program was implemented on a treadmill for 4 weeks, 3 times a week, once a day, for 30 minutes once. In addition, muscle activity and motor neurons were measured and analyzed using surface electromyography before intervention. As a result of the study, the muscle activity of the rectus femoris, biceps femoris, tibialis anterior and gastrocnemius was significantly increased (p<.001) in the pre-and-poster comparison within the group of experimental group I (p<.001). In the pre-and-poster comparison of the control group, the muscle activity of the rectus femoris, biceps femoris, tibialis anterior and gastrocnemius was significantly increased (p<.001). In comparison of changes between groups, there was a significant difference in the activity of the rectus femoris muscle (p<.05). Combining aerobic exercise in parallel with lower extremity blood flow restriction can be developed into an injury prevention exercise program that can restore functional activity in rehabilitation training for elite athletes and elderly people with weak joints. In addition, based on these results in future research, it is considered that it is necessary to expand the scope of non-normal subjects and conduct various studies according to the pressure intensity.

The Effect of High-Heeled Shoes With Total Contact Inserts in the Gait Characteristics of Young Female Adults During Lower Extremity Muscle Fatigue (하지 근육의 피로상태 동안 높은 굽 신발에 적용한 전면접촉인솔이 젊은 여성의 보행 특성에 미치는 영향)

  • Ko, Eun-Hye;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Kwon, Oh-Yun;Choi, Kyu-Han
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.38-45
    • /
    • 2008
  • This study investigated gait characteristics, kinematics, and kinetics in the lower extremities between two different shoe conditions (high heeled shoes (7 cm), and high heeled shoes with a total contact insert (TCI)) after lower extremity muscle fatigue. Although TCI shave been applied in high heeled shoes to increase comfort and to decrease foot pressure, no study has attempted to identify the effects of TCI in fatigue conditions. The purpose of this study was to determine the effects of walking in high heeled shoes with TCI after lower extremity muscle fatigue was induced. This study was carried out in a motion analysis laboratory at Hanseo University. A volunteer sample of 14 healthy female subjects participated. All in fatigue conditions, the subjects were divided into two groups. The muscle fatigue was induced by 40 voluntary dorsi- and plantar-flexion exercises and 40 heel-rise exercises of the dominant foot. Surface electromyography was used to confirm the localized muscle fatigue using power spectral analysis of three muscles (tibialis anterior, gastrocnemius medialis and lateralis). The results were as follows: (1) In muscle fatigue conditions, the use of TCI decreased the peak flexion angle of the hip joint significantly in the early stance phase (p<.05) and increased the peak hip flexion moment in the terminal stance phase (p<.05). (2) In muscle fatigue conditions, the application of TCI also increased peak hip power generation in the early stance phase and peak hip power absorption in the terminal stance phase (p<.05). (3) In muscle fatigue conditions, the use of TCI reduced the impact force significantly and increased the secondary peak vertical GRF. These findings suggest that the TCI may provide beneficial effects when muscle fatigue occurs for a high heeled shoe gait. Future research employing the patient population and various types of TCI materials are required to clarify the effects of TCI.

  • PDF

Effect of Exercise Training on Aging Atrophy in Rat Skeletal Muscle II. Effect of Long Term Weight-Training (흰쥐 골격근의 노화성 위축에 대한 운동훈련의 영향 - II. 장기간에 걸친 체중부하 훈련의 영향 -)

  • Park, Sung-Han;Park, Won-Hark;Lee, Yong-Deok;Kim, Jung-Ki
    • Applied Microscopy
    • /
    • v.25 no.4
    • /
    • pp.26-51
    • /
    • 1995
  • The present study was designed to examine effect of long term weight-training on aging atrophy in the rat skeletal muscle. Male rats of 8, 15, and 24 month old were used. Each age groups included control and weight-training for 5 months by using body press apparatus. The histo- and cytochemical, ultrastructural and stereological changes in aging skeletal muscles of the rat were observed in the present study. During the training period the body weight and muscular weight in all groups except the rectus femoris and the gastrocnemius in young age groups remained constant, but muscular weights were increased in the rectus femoris and the gastrocnemius muscles in young age groups. In trained rat, the volume density of muscle fiber type IIA and IIB were increased, but those of type IIC was decreased. Type I remained constant in 8 and 15 month old age groups, but reduced in the tibialis anterior and the gastrocnemius muscles in the 24 month old groups. Some histotological and ultrastructural changes associated with age were found: numerical increase of cytiplasmic vacuoles, lysosomes, lipofuscins, and irregularity of myofibrils. At 24 month old groups some unusual formation of contraction band and muscle splitting were observed. After weight-training, ultrastructural degenerative changes occured in the type I muscle fiber, such as splitting of muscle fiber, disorganization of myofilaments, swelling of mitochondria, accumulation of many lipid droplets, appearance of many lysosomes and residual bodies and necrotic fibers, in the old age groups. But, in the type II muscle fibers hypertrophy of muscle fiber appeared without any noticible damage as the type I. The activities of $Mg^{++}$ -ATPase decreased with age and this enzyme activities in the trained rat were significantly decreased with age. Activities of the acid phosphatase were increased with age and significantly in the trained rat. In stereological analysis, volume density of the myofibrils and the tubular system were increased, on the other hand there mitochondrial capacity was decreased. These experimental results suggested that old rats are not susceptible to be affected by weight-training as young rats, and that physical capacity of the rats must be considered when old rats are exercised for training.

  • PDF

A case of neonatal peroneal neuropathy with intrauterine onset (신생아 종아리신경병증 1례)

  • Lee, Sang-Soo;Sim, Ji-Yun;Kim, Mi-Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.6
    • /
    • pp.585-587
    • /
    • 2007
  • Peroneal neuropathy presenting at birth is a rare disorder. Although neonatal mononeuropathies may be related to obstetrical complications, prenatal mechanisms should be also considered. We describe an infant who was born at term by cesarean section due to breech presentation with a unilateral footdrop. Lack of compound muscle action potential in the peroneal nerve and denervation potentials confined to the tibialis anterior and the extensor hallucis longus muscles in the electrophysiological studies on the fourth day of life strongly suggest an isolated peroneal neuropathy of intrauterine onset. Early and sequential electrodiagnostic studies will be important to provide better temporal and pathophysiologic definitions, the better timing of onset and prognosis for mononeuropathies presenting in newborn infants.

A Comparative Analysis of Biomechanical Factors and Premotor Time of Body Muscles between Elite College and Amateur Baseball Players during the Baseball Batting Motion

  • Lim, Young-Tae;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.205-211
    • /
    • 2016
  • Purpose: The aim of this study was to analyze biomechanical factors and PMT (premotor time) of body muscles between elite college and amateur baseball players during the baseball batting motion. Method: Kinematic and electromyographic data were obtained for 10 elite college baseball players and 10 amateur baseball players who participated in this study. All motion capture data were collected at 200 Hz using 8 VICON cameras and the PMT of muscles was recorded using a Delsys Trigno wireless system. The peak mean bat speed and the peak mean angular velocities of trunk, pelvis, and bat with PMT of 16 body muscles were computed. These kinematic and PMT data of both groups were compared by independent t-tests (p < .05). Results: The pelvis, trunk, and bat showed a sequence of angular velocity value during baseball batting. The PMTs of right tibialis anterior, left gastrocnemius, external oblique, and erector spinae were significantly different between the two groups. Conclusion: The PMT of body muscles was related to the shifting of body and rotation of the pelvis and the trunk segment, and this action can be considered the coordinated muscle activity of the lower and upper body.

Characteristics of Leg and Ankle in Taxi Drivers

  • Kang, Sun-Young;Choung, Sung-Dae;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.21 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • For professional drivers, there is a possibility to have musculoskeletal disorders on ankle joint due to repetitive pedaling operation. Therefore, this study have focused to examine ankle active range of motion (AROM), dorsiflexor strength, and pressure pain threshold (PPT) of tibialis anterior muscle (TA) in taxi drivers compared to a age-matched control group. Thirty male taxi drivers with at least 10 years of driving experience and thirty male sedentary workers were evaluated for ankle AROM, dorsiflexor strength, and PPT of TA. Multiple independent t-tests were used to identify significant differences between two groups. For the results, taxi drivers had significantly less AROM in dorsiflexion and greater AROM in external tibial rotation compared to the control group. Also, dorsiflexor strength and PPT of TA in taxi drivers was significantly lower than in the control group. This study indicates that the repetitive ankle movements associated with driving have an effect on ankle AROM, dorsiflexor strength, and PPT of TA and may lead to work-related musculoskeletal disorders on ankle. Professional drivers may need to be educated to prevent a potential musculoskeletal disorders associated with repetitive movement.