• Title/Summary/Keyword: thrust misalignment

Search Result 9, Processing Time 0.02 seconds

Operating Performance Limitations of Tilting Pad Thrust Bearings Due to Misalignment (정렬불량에 따른 틸팅 패드 스러스트 베어링의 운전 성능 한계 검토)

  • Song, AeHee;Choi, SeongPil;Kim, SeonJin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.82-87
    • /
    • 2020
  • In thrust bearings, the thrust collar and bearing surface need to be parallel to each other to ensure that all pads share the same load. In rotating machines, the shaft system cannot achieve perfect alignment. Misalignment of the thrust collar results in some pads supporting a higher load than others and excessive loads being placed on some pads. Consequently, high loads and high temperatures may occur in the bearing. Thus, in this study, we aim to analytically evaluate the performance of a misaligned non-equalizing direct lubricated tilting pad thrust bearing. We define the oil film thickness of the misaligned thrust bearing using the Byrant angle. Additionally, we calculate the pressure distribution and temperature distribution of the thrust bearing using the generalized Reynolds equation and energy equation. The design limit of the thrust bearing is defined by the load and temperature. Therefore, we evaluate the allowable misalignment angle as the limit of the maximum load and temperature. The analysis results demonstrate that an increase in the speed and load corresponds to a smaller allowable misalignment angle. However, as this is not the same for all thrust bearings, evaluating the allowable misalignment angle at each thrust bearing is essential.

Experimental Study on the Characteristics of Misaligned Self-equalizing Tilting Pad Thrust Bearing (자려 평형 틸팅 패드 스러스트 베어링의 정렬불량에 따른 베어링 특성에 관한 실험적 연구)

  • Song, AeHee;Jo, HyunJun;Choi, SeongPil;Kim, SeonJin
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.27-33
    • /
    • 2020
  • Self-equalizing tilting pad thrust bearings are usually employed in turbomachines to achieve high stability and reliability. A tilting pad bearing can incorporate self-equalizing links to handle the misalignment between the bearing and the thrust collar. In this popular design method, the pads sit on the upper-level plates and the lower-level plates stay on the retainer base. With misalignment, the pads that are heavily loaded are pushed down. Consequently, the link pushes up the pads on the opposite side, keeping the bearing surface parallel to the thrust collar surface. The self-equalizing link is used to handle the misalignment from the thermal and mechanical effects. In this study, the experimental investigation deals with the performance of self-equalizing tilting pad thrust bearings. The test rig for evaluating the performance of bearing is developed which can control the misalignment angle. Simultaneous measurements are taken for the force acting on each pad. Pad metal temperature and oil film thickness are functions of the shaft speed, bearing load, misalignment angle, and design of leveling plates. The effect of misalignment on bearing performance is discussed. The results demonstrate that the load on each pad depends on the test conditions(especially misalignment angle), and the load influences the performance of bearings.

The Thrust Axis Alignment of Kick Motor for Ground Firing Test (지상 연소 시험을 위한 킥 모터의 추력 축 정렬)

  • Jung, Dong-Ho;Kim, Ji-Hoon;Lee, Han-Ju;Oh, Seung-Hyub
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.389-392
    • /
    • 2008
  • The thrust axis alignment of the launch vehicle is very important because of the misalignment causes the unstable attitude control and results in mission failure. Generally, optical methods such as digital theodolite and laser tracker and mechanical method such as turn table method are used to thrust axis alignment. This article deals with the simple method of thrust axis alignment of Kick Motor.

  • PDF

Analysis of Thrust Misalignments and Offsets of Lateral Center of Gravity Effects on Guidance Performance of a Space Launch Vehicle (추력비정렬 및 횡방향 무게중심 오프셋에 의한 우주발사체 유도 성능 영향성 분석)

  • Song, Eun-Jung;Cho, Sangbum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.574-581
    • /
    • 2019
  • This paper investigates the effects of thrust misalignments and offsets of the lateral center of gravity of a space launch vehicle on its guidance performance. Sensitivity analysis and Monte Carlo simulations are applied to analyze their effects by computing changes in orbit injection errors when including the error sources. To compensate their effects, the attitude controller including an integrator additionally and the Steering Misalignment Correction (SMC) routine of the Saturn V are considered, and then Monte Carlo simulations are performed to evaluate their performances.

KSLV-I Kick Motor System Thrust Axis Alignment (KSLV-I 킥모터 시스템 추력 축 정렬)

  • Lee, Han-Ju;Jung, Dong-Ho;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.138-142
    • /
    • 2010
  • The thrust axis alignment of the launch vehicle is very important because of the misalignment causes the unstable attitude control and results in mission failure. Generally, optical methods such as digital theodolite and laser tracker and mechanical method such as turn table method are used to align thrust axis to vehicle axis. This article deals with the simple method of thrust axis alignment of Kick Motor.

Design of Pulse Amplitude Modulation Controller for the Attitude Control of the Payload of a Sounding Rocket (과학로켓 탑재부 자세제어를 위한 펄스 진폭 변조 제어기 설계)

  • Gong, Hyeon-Cheol;Jeon, Sang-Woon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.981-986
    • /
    • 2000
  • A pulse amplitude modulation(PAM) controller is designed for the 3 axis attitude control of a sounding rocket. a certain number of fixed level of thrust are used for the pulse amplitude modulation and the nonlinearity of the controller is considered to examine the existence of the limit cycles and the stability analysis is carried out with the aid of Nyquist plot.

  • PDF

TVC Actuation Tests and Analyses for Real-Sized Kick Motor Assembly of KSLV-I (KSLV-I 실물형 킥모터조합체 TVC 구동특성시험 및 분석)

  • Sun, Byung-Chan;Park, Yong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.146-156
    • /
    • 2007
  • In this paper, the TVC actuation test and analysis results for a flexible seal kick motor nozzle are presented. A real-sized test model of KSLV-I kick motor system is applied to water pressurizing TVC tests which investigate the property changes in TVC nozzle expansion and TVC actuation performance against chamber pressure changes. The equipments which are required for TVC actuation tests are briefly explained. The TVC actuation tests are firstly accomplished in static mode, which reveals TVC error characteristics including thrust misalignment, control accuracy, and TVC stroke increase, etc. The properties in frequency domain is given via dynamic tests. These results may play an important role in enhancing the TVC control performance of KSLV-I.

  • PDF

A Study on the Thrust Axis Alignment of Kick Motor for KSLV-I (KSLV-I 상단 킥 모터 추력 축 정렬에 대한 연구)

  • Jung, Dong-Ho;Lee, Han-Ju;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.76-82
    • /
    • 2011
  • The thrust axis alignment of the launch vehicle is very important because the misalignment causes the unstable attitude control and results in mission failure. Generally, optical methods such as digital theodolite and laser tracker and mechanical method such as turn table method are used to align the thrust axis. This article deals with the simple method using inclinometer based on the gravitational direction. The inclinometer indicates zero degree when that is located on the perpendicular plate to gravitational direction. This method needs two inclinometer, such as standard and alignment ones and uses the angle difference as the reference data to adjust the TVC actuator offset.

Study on a Spin Stabilization Technique Using a Spin Table (스핀테이블을 이용한 스핀안정화 기법 연구)

  • Kim, Dae-Yeon;Suh, Jong-Eun;Han, Jae-Hung;Seo, Sang-Hyeon;Kim, Kwang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.419-426
    • /
    • 2018
  • For an orbit transfer in a space exploration mission, a solid or liquid rocket booster is included at the last stage of the launch vehicle. During the orbit transfer, thrust misalignment can cause a severe orbit error. Three axis attitude control or spin stabilization can be implemented to minimize the error. Spin stabilization technique has advantages in structural simplicity and lightness. One of ways to apply the spin stabilization to the payload is to include a spin table system in the launch vehicle. In this paper, effect of the spin table system on separation dynamics of the payload is analyzed. Simple model of the spin table to mimic basic functions is designed and simulation environment is established with the model. Effect of the spin table is tested by evaluating separation dynamics of a payload with and without the spin table. Analysis on tolerance effect of separation spring constant on separation dynamics of a payload is conducted.