• Title/Summary/Keyword: thresholding value

Search Result 114, Processing Time 0.025 seconds

An Image Segmentation based on Chamfer Algorithm (Chamfer 알고리듬에 기초한 영상분리 기법)

  • Kim, Hak-Kyeong;Jeong, Nam-Soo;Lee, Myung-Suk;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.670-675
    • /
    • 2001
  • This paper is to propose image segmentation method based on chamfer algorithm. First, we get original image from CCD camera and transform it into gray image. Second, we extract maximum gray value of background and reconstruct and eliminate the background using surface fitting method and bilinear interpolation. Third, we subtract the reconstructed background from gray image to remove noises in gray image. Fourth, we transform the subtracted image into binary image using Otsu's optimal thresholding method. Fifth, we use morphological filters such as areaopen, opening, filling filter etc. to remove noises and isolated points. Sixth, we use chamfer distance or Euclidean distance to this filtered image. Finally, we use watershed algorithm and count microorganisms in image by labeling. To prove the effectiveness, we apply the proposed algorithm to one of Ammonia-oxidizing bacteria, Acinetobacter sp. It is shown that both Euclidean algorithm and chamfer algorithm show over-segmentation. But Chamfer algorithm shows less over-segmentation than Euclidean algorithm.

  • PDF

Adaptive Thresholding Method Using Zone Searching Based on Representative Points for Improving the Performance of LCD Defect Detection (LCD 결함 검출 성능 개선을 위한 대표점 기반의 영역 탐색을 이용한 적응적 이진화 기법)

  • Kim, Jin-Uk;Ko, Yun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.689-699
    • /
    • 2016
  • As the demand for LCD increases, the importance of inspection equipment for improving the efficiency of LCD production is continuously emphasized. The pattern inspection apparatus is one that detects minute defects of pattern quickly using optical equipment such as line scan camera. This pattern inspection apparatus makes a decision on whether a pixel is a defect or not using a single threshold value in order to meet constraint of real time inspection. However, a method that uses an adaptive thresholding scheme with different threshold values according to characteristics of each region in a pattern can greatly improve the performance of defect detection. To apply this adaptive thresholding scheme it has to be known that a certain pixel to be inspected belongs to which region. Therefore, this paper proposes a region matching algorithm that recognizes the region of each pixel to be inspected. The proposed algorithm is based on the pattern matching scheme with the consideration of real time constraint of machine vision and implemented through GPGPU in order to be applied to a practical system. Simulation results show that the proposed method not only satisfies the requirement for processing time of practical system but also improves the performance of defect detection.

Detection of Brain Ventricle by Using Wavelet Transform and Automatic Thresholding in MRI Brain Images (MRI 뇌 영상에서 웨이브릿 변환과 자동적인 임계치 설정을 이용한 뇌실 검출)

  • Won, Chul-Ho;Kim, Dong-Hun;Woo, Sang-Hyo;Lee, Jung-Hyun;Kim, Chang-Wook;Chung, Yoon-Su;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1117-1124
    • /
    • 2007
  • In this paper, an algorithm that can define the threshold value automatically proposed in order to detect a brain ventricle in MRI brain images. After the wavelet transform, edge sharpness, which means the average magnitude of detail signals on the contour of the object, was computed by using the magnitude of horizontal and vertical detail signals. The contours of a brain ventricle were detected by increasing the threshold value repeatedly and computing edge sharpness. When the edge sharpness became maximal, the optimal threshold was determined, and the detection of a brain ventricle was accomplished finally. In this paper, we compared the proposed algorithm with the geodesic active contour model numerically and verified the efficiency of the proposed algorithm by applying real MRI brain images.

  • PDF

Automatic Estimation of Threshold Values for Change Detection of Multi-temporal Remote Sensing Images (다중시기 원격탐사 화상의 변화탐지를 위한 임계치 자동 추정)

  • 박노욱;지광훈;이광재;권병두
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.465-478
    • /
    • 2003
  • This paper presents two methods for automatic estimation of threshold values in unsupervised change detection of multi-temporal remote sensing images. The proposed methods consist of two analytical steps. The first step is to compute the parameters of a 3-component Gaussian mixture model from difference or ratio images. The second step is to determine a threshold value using Bayesian rule for minimum error. The first method which is an extended version of Bruzzone and Prieto' method (2000) is to apply an Expectation-Maximization algorithm for estimation of the parameters of the Gaussian mixture model. The second method is based on an iterative thresholding algorithm that successively employs thresholding and estimation of the model parameters. The effectiveness and applicability of the methods proposed here were illustrated by two experiments and one case study including the synthetic data sets and KOMPSAT-1 EOC images. The experiments demonstrate that the proposed methods can effectively estimate the model parameters and the threshold value determined shows the minimum overall error.

A Study on the Voxel Coloring using Multi-variable Thresholding (다중 가변 문턱값을 이용한 복셀 칼라링 기법에 관한 연구)

  • Kim Hyo-Sung;Lee Sang-Wook;Nam Ki-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1102-1110
    • /
    • 2005
  • In this paper, we proposed a advanced approach to resolve the trade-off problem for the threshold value determining the photo-consistency in the previous algorithms. The threshold value for the surface voxel is substituted the photo-consistency value of the inside voxel. As iterating the voxel coloring process, the threshold is approached to the optimal value for the individual surface voxel. we present an energy minimization formulation of the binary labeling problem that surface voxels classify into opacity or transparency. The energy formula consists of the data term and the smoothness term. As considering neighboring voxels in the labeling problem, the unevenness of reconstructed surface is reduced. The labeling whose energy is the global minimum can be computed using a graph cut.

Performance Analysis of the Image Segmentation Using an Intensity Histogram (밝기분포도를 이용한 영상영역화의 성능분석)

  • 김경수;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.504-509
    • /
    • 1987
  • In this paper a characteristics of image which can be segmented based on the thresholding technique using a histogram was investigated employing 3 parameters: the variance of pixel value, the average mean difference between target and background and the target size. The threshold value for the histogram segmentation was determined by applying the hypothesis testing theory. The performance of the selected threshold was evaluated by computing a probability of error. Since a priori probability can be easily obtained from the histogram, it was found that the Bayes decision rule which theoretically guarantees the minimum probability of error works better than the minimax criterion rule.

  • PDF

A Study on Image Segmentation Method Based on a Histogram for Small Target Detection (소형 표적 검출을 위한 히스토그램 기반의 영상분할 기법 연구)

  • Yang, Dong Won;Kang, Suk Jong;Yoon, Joo Hong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1305-1318
    • /
    • 2012
  • Image segmentation is one of the difficult research problems in machine vision and pattern recognition field. A commonly used segmentation method is the Otsu method. It is simpler and easier to implement but it fails if the histogram is unimodal or similar to unimodal. And if some target area is smaller than background object, then its histogram has the distribution close to unimodal. In this paper, we proposed an improved image segmentation method based on 1D Otsu method for a small target detection. To overcome drawbacks by unimodal histogram effect, we depressed the background histogram using a logarithm function. And to improve a signal to noise ratio, we used a local average value by the neighbor window for thresholding using 1D Otsu method. The experimental results show that our proposed algorithm performs better segmentation result than a traditional 1D Otsu method, and needs much less computational time than that of the 2D Otsu method.

A Study on the Eye-line Detection from Facial Image taken by Smart Phone (스마트 폰에서 취득한 얼굴영상에서 아이라인 검출에 관한 연구)

  • Koo, Ha-Sung;Song, Ho-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2231-2238
    • /
    • 2011
  • In this paper, the extract method of eye and eye-line from picture of a person is proposed. Most of existing papers are to extract the position of eyeball but in this paper, by extracting not only the position of eyeball but also eye-line, it can be applied to the face application program variously. The experimental data of the input picture is a full face photograph taken by smart phone, basically the picture is limited to the face of one person and back ground can be taken from every where and no restriction of race. The proposed method is to extract face candidated area by using Harr Classifier and set up the candidate area of eye position from face candidate area. To extract high value from eye candidate area using dilate operation, and proposed the method to classify eye and eyelash by local thresholding of the picture. After that, using thresholding image from eyemapC that Hsu's suggested, and separated the area with eye and without eye. Finally extract the contour of eye and detect eye-line using optimum ellipse estimation.

Auto Thresholding for Efficient Neurofeedback Trainning (효과적인 뉴로피드백 훈련을 위한 임계값 설정 기법)

  • Shin, Min-Chul;Hwang, Hae-Do;Yoon, Seung-Hyun;Lee, Jieun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.2
    • /
    • pp.19-29
    • /
    • 2019
  • We develop a complete system that includes data collection, signal processing, and real-time interaction for effective neurofeedback training. Our system supports a sophisticated technique to find threshold values which are quite important for effective neurofeedback system. A therapist specifies a target success rate of positive feedback, allowable error and time. The system computes a current success rate and compare it with the target one. If the difference between two rates exceeds the allowable error for allowable time, we find an optimum threshold value to obtain the target success rate by using numerical optimization technique. We conduct several experiments by varying input parameters: target success rate, allowable error and time, and demonstrate the effectiveness of our technique by showing the desired target success rate is stably obtained and systematically controlled by input parameters.

Detection of The Real-time Weather Information from a Vehicle Black Box (차량용 블랙박스 영상에서의 실시간 기상정보 검지)

  • Kang, Ju-mi;Lee, Jaesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.320-323
    • /
    • 2014
  • Today is going with the advancement of intelligent transportation systems and traffic environment and helping to provide safe and convenient service through a mobile device work with the popularization of the vehicle black box. The traffic flow by a variety of causes is constantly changing, it is often unable to prepare the driver, depending on external factors can not be controlled by the power of the public, leading to a major accident. The system needs to pass the real-time weather data in the inter-operator to prevent this. The proposed detection algorithm weather information delivered real-time weather information for this paper. The weather condition is detected by using the contrast between the histogram of the motion of the wiper and the clear day algorithm. In general, the wiper is worked in extreme weather conditions that will have a value different contrast due to rain or snow. Situation was considered clear, snowy conditions, such as using it on a rainy situation. First, designated as ROI (Region Of Interest) of the minimum area that can be detected in order to reduce the amount of calculation for the wiper, the wiper, which was detected through the operation of the threshold Thresholding the brightness of the vehicle wiper. In addition, we distinguish the value of each meteorological situation by using contrast. Results was obtained to 80% for the snow conditions, a rainy situation.

  • PDF