• 제목/요약/키워드: three-phase voltage

검색결과 1,252건 처리시간 0.033초

Constant DC Capacitor Voltage Control based Strategy for Active Load Balancer in Three-phase Four-wire Distribution Systems

  • Win, Tint Soe;Tanaka, Toshihiko;Hiraki, Eiji;Okamoto, Masayuki;Lee, Seong Ryong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.176-183
    • /
    • 2014
  • Three-phase four-wire distribution systems are used for both three-phase three-wire loads and single-phase two-wire consumer appliances in South Korea, Myanmar and other countries. Unbalanced load conditions frequently occur in these distribution systems. These unbalanced load conditions cause unbalanced voltages for three-phase and single-phase loads, and increase the loss in the distribution transformer. In this paper, we propose constant DC capacitor voltage control based strategy for the active load balancer (ALB) in the three-phase four-wire distribution systems. Constant DC capacitor voltage control is always used in active power line conditioners. The proposed control strategy does not require any computation blocks of the active and reactive currents on the distribution systems. Balanced source-side currents with a unity power factor are obtained without any calculation block of the unbalanced active and reactive components on the load side. The basic principle of the constant DC capacitor voltage control based strategy for the ALB is discussed in detail and then confirmed by both digital computer simulations using PSIM software and prototype experimental model. Simulation and experimental results demonstrate that the proposed control strategy for the ALB can balance the source currents with a unity power factor in the three-phase four-wire distribution systems.

3상 4선식 부하설비의 전압, 전류 및 부하 불평형율 측정 분석 (The measurement & Analysis of Voltage, Current and Load Unbalance Factor at Three Phase Four Wire Load System)

  • 김종겸;박영진;이동주;이종한;정종호;이은웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.28-30
    • /
    • 2005
  • This paper presents a scheme on the characteristics of voltage and current unbalance factor under the load variation at the three phase 4-wire system. The voltage unbalance factor of the three-phase 4-wire system is approved by the field measurement. This system is composed of three one-phase transformer with each other capacity. Current unbalance factor is measured by the power quality measurement apparatus and compared by the load unbalance factor. Each phase has an impedance each other by the unbalanced load operation pattern and give rise to voltage unbalance.

  • PDF

New Control Strategy for Reducing Switching Losses in Three-Phase Voltage-Source PWM Converters

  • Dong, Xiaopeng;Wang, Zhaoan
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.366-373
    • /
    • 1998
  • In this paper, a new control strategy to reduce switching losses in three-phase voltage-source PWM converters is proposed according to Modified-Period-Average-Model (MPAN). The basic concept of this strategy is aimed at calculating the phase control voltages for controlling the source currents to be sinusoidal and in phase with the source voltages, and reducing the number of switching in each period. The phase control voltages of Period-Average-Model(PAM) is obtained according to analyzing the operation of PWM converter. In order to reduce the sensitivity to system parameters in PAM, MPAM is deduced. Then a square wave whose frequency is three times of utility frequency is added to the phase control voltages derived from MPAM. The control strategy reduces the switching losses since there exists about one-third blanking time for every phase in one period. The theoretical derivation and the control strategy are experimentally verified on a 2.5 kW three-phase voltage source converter.

  • PDF

B4 인버터의 제어성능 향상을 위한 전압보상 기법 (A Voltage Compensation Method to Improve the Control Performance for B4 Inverters)

  • 오재윤
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.317-320
    • /
    • 2000
  • This paper proposes a voltage compensation method to improve the control performance of B4 inverter which is studied for low-cost drive systems. The B4 inverter employs only four switches and it has a center-tapped connection in the split dc-link capacitors to one phase of a three-phase motor. In the B4 topology unbalan-cd three-phase voltages will be generated by the dc link voltage ripple. To solve this problem we present a voltage compensation method which adjusts switching times considering dc link voltage ripple. The proposed method is verified by simulation results,

  • PDF

3상 임베디드 Z-소스 인버터 (Three Phase Embedded Z-Source Inverter)

  • 오승열;김세진;정영국;임영철
    • 전력전자학회논문지
    • /
    • 제17권6호
    • /
    • pp.486-494
    • /
    • 2012
  • In this paper, we proposes the three-phase embedded Z-source inverter consisting of the three embedded Z-source converters and it's the output voltage control method. Each embedded Z-source converter can produce the bipolar output capacitor voltages according to duty ratio D such as single-phase PWM inverter. The output AC voltage of the proposed system is obtained as the difference in the output capacitor voltages of each converter, and the L-C output filter is not required. Because the output AC voltage can be stepped up and down, the boost DC converter in the conventional two-stage inverter is unnecessary. To confirm the validity of the proposed system, PSIM simulation and a DSP based experiment were performed under the condition of the input DC voltage 38V, load $100{\Omega}$, and switching frequency 30kHz. Each converter is connected by Y-connection for three-phase loads. In case that the output phase voltage is the same $38V_{peak}$ as the input DC voltage and is the 1.5 times($57V_{peak}$), the simulation and experimental results ; capacitor voltages, output phase voltages, output line voltages, inductor currents, and switch voltages were verified and discussed.

대칭 불평형 전압 운전시 유도전동기의 동작 특성 해석 (Analysis on the Operation Characteristics of Induction Motor Operated by Symmetric Unbalanced Voltage)

  • 김종겸;손홍관;정종호;이은웅
    • 전기학회논문지P
    • /
    • 제53권3호
    • /
    • pp.110-115
    • /
    • 2004
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. This paper presents a scheme on operation states of a three-phase induction motor under unbalanced voltages. The three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting the magnitude and phase angle of each phase. The voltage unbalanced factor(VUF) of the three-phase source voltages can then be varied to examine the different values of VUF on machine's operation characteristics.

A Simplified Control Algorithm for Three-Phase, Four-Wire Unified Power Quality Conditioner

  • Singh, Bhim;Venkateswarlu, P.
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.91-96
    • /
    • 2010
  • In this paper, a simplified control algorithm for a three-phase, four-wire unified power quality conditioner (UPQC) is presented to compensate for supply voltage distortions/unbalance, supply current harmonics, the supply neutral current, the reactive power and the load unbalance as well as to maintain zero voltage regulation (ZVR) at the point of common coupling (PCC). The UPQC is realized by the integration of series and shunt active filters (AFs) sharing a common dc bus capacitor. The shunt AF is realized using a three-phase, four leg voltage source inverter (VSI) and the series AF is realized using a three-phase, three leg VSI. A dynamic model of the UPQC is developed in the MATLAB/SIMULINK environment and the simulation results demonstrating the power quality improvement in the system are presented for different supply and load conditions.

A Three Phase Three-level PWM Switched Voltage Source Inverter with Zero Neutral Point Potential

  • Oh Won-Sik;Han Sang-Kyoo;Choi Seong-Wook;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • 제5권3호
    • /
    • pp.224-232
    • /
    • 2005
  • A new three phase three-level Pulse Width Modulation (PWM) Switched Voltage Source (SVS) inverter with zero neutral point potential is proposed. It consists of three single-phase inverter modules. Each module is composed of a switched voltage source and inverter switches. The major advantage is that the peak value of the phase output voltage is twice as high as that of a conventional neutral-point-clamped (NPC) PWM inverter. Thus, the proposed inverter is suitable for applications with low voltage sources such as batteries, fuel cells, or solar cells. Furthermore, three-level waveforms of the proposed inverter can be achieved without the switch voltage imbalance problem. Since the average neutral point potential of the proposed inverter is zero, a common ground between the input stage and the output stage is possible. Therefore, it can be applied to a transformer-less Power Conditioning System (PCS). The proposed inverter is verified by a PSpice simulation and experimental results based on a laboratory prototype.

Three-Phase Four-Wire Inverter Topology with Neutral Point Voltage Stable Module for Unbalanced Load Inhibition

  • Cai, Chunwei;An, Pufeng;Guo, Yuxing;Meng, Fangang
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1315-1324
    • /
    • 2018
  • A novel three-phase four-wire inverter topology is presented in this paper. This topology is equipped with a special capacitor balance grid without magnetic saturation. In response to unbalanced load and unequal split DC-link capacitors problems, a qusi-full-bridge DC/DC topology is applied in the balance grid. By using a high-frequency transformer, the energy transfer within the two split dc-link capacitors is realized. The novel topology makes the voltage across two split dc-link capacitors balanced so that the neutral point voltage ripple is inhibited. Under the condition of a stable neutral point voltage, the three-phase four-wire inverter can be equivalent to three independent single phase inverters. As a result, the three-phase inverter can produce symmetrical voltage waves with an unbalanced load. To avoid forward transformer magnetic saturation, the voltages of the primary and secondary windings are controlled to reverse once during each switching period. Furthermore, an improved mode chosen operating principle for this novel topology is designed and analyzed in detail. The simulated results verified the feasibility of this topology and an experimental inverter has been built to test the power quality produced by this topology. Finally, simulation results verify that the novel topology can effectively improve the inhibition of an inverter with a three-phase unbalanced load while decreasing the value of the split capacitor.

3상 3선식 전력계통의 고조파 저감을 위한 새로운 직렬형 능동 필터 시스템 (New series Active power filtering system to reduce the harmonic in 3-Phase 3-Wire system)

  • 한윤석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.119-122
    • /
    • 2000
  • This paper presents a new compensation method of series active power filter. The proposed method applied in the three-phase three-wire system can generate harmonic compensation voltage in front of the harmonic source. Futhermore it is also expended to three-phase four-wire system considering zero-sequence voltage. The compensation principle is described in detail. Experimental result show the validity of the proposed method in the three-phase three-wire system

  • PDF