• 제목/요약/키워드: three-dimensional tank

검색결과 138건 처리시간 0.036초

반응면기법을 이용한 침전조의 형상최적설계 (Shape Optimization of Sedimentation Tank Using Response Surface Method)

  • 김홍민;최승만;김광용
    • 한국유체기계학회 논문집
    • /
    • 제7권6호
    • /
    • pp.55-61
    • /
    • 2004
  • A numerical procedure for optimizing the shape of three-dimensional sedimentation tank is presented to maximize its sedimentation efficiency. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis for multi-phase flow. Standard $k-{\epsilon}$ model is used as a turbulence closure. Three design variables such as, tank height to center feed wall diameter ratio, blockage ratio of center feed wall and angle of distributor are chosen as design variables. Sedimentation efficiency is defined as an objective function. Full-factorial method is used to determine the training points as a means of design of experiment. Sensitivity of each design variable on the objective function has been evaluated. And, optimal values of the design variables have been obtained.

연료탱크 제작시 시뮬레이션을 통한 용접변형 해석 (Analysis of Welding Distortion during the Production of Fuel Tanks for Excavators)

  • 양영수;김덕윤;배강열
    • 한국기계가공학회지
    • /
    • 제15권6호
    • /
    • pp.24-34
    • /
    • 2016
  • To attach a fuel tank to an excavator, two sets of mounting plates on which three bosses are attached are welded onto the tank. In this study, the welding process of a fuel tank for an excavator was modeled using a finite element numerical method. The tank was modeled as a simple plate to which the mounting plate or bosses were attached by fillet welding. Thermal and thermo-elasto-plastic analyses of the welding process were carried out to predict the temperature distribution and material distortion during welding, respectively. Three different welding sequences for the tank were also modelled to compare the deformation that occurred due to each welding sequence. The results of the analysis predicted that changing the welding sequence around the mounting plate could not position the boss within the allowable dimensional range. The results also revealed the sequence in which the maximum distortion of the bosses welded onto the tank was 30% less than the maximum distortion due to the other sequences.

PIV를 이용한 3차원 속도계측에 의한 유동장의 공간 및 벽면압력 분포 추정에 관한연구 (A Study on Estimation of inner and Wall Pressure Distribution by 3-Dimensional velocity Measurement using PIV)

  • 이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.468-480
    • /
    • 1998
  • A flow measurement system which is able to measure the instantaneous three-dimensional velocity components and the pressure distribution of fluid flows is developed using a digital image processing system and the stereoscopic photogrammetry. This system consists of two TV cameras a digital image processor and a 32-bit microcomputer. The capability of the developed system is verified by a preliminary test in which three-dimensional displancements of moving particles arranged on a rotating plate are tracked automatically. The constructed system is through the measurement and spatial pressure distribution is also obtained. The measurement uncertainty of this system is evaluated quantitatively. The present technique is applicable to the measurement of an unsteady fluid phenomenon especially to the measurement of three-dimensional velocity field of a complex flow.

  • PDF

유한요소-경계요소 조합에 의한 3차원 유체저장 구조물의 주파수 응답해석 (Three Dimesional Analysis of Liquid Storage Tanks Using FE-BE Coupling Method in Frequency Domin)

  • 김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.275-283
    • /
    • 1999
  • To predict the dynamic behavior of the cylindrical liquid storage tank subjected to seismic ground motion three dimesional analysis with liquid-structure interaction must be performed, In this study a three dimensional dynamic analysis method over the frequency domain using FE-BE coupling technique which combines the efficiency of the boundary elements for liquid with the versatility of the finite shell elements for tank. The liquid region is modeled using boundary elements which can counter the sloshing effect at free surface and the structure region the tank itself is modeled using the degenerated finite shell elements. At the beginning of the procedure the equivalent mass matrix of the liquid is generated by boundary elements procedure. Then this equivalent mass matrix is combined with the mass matrix of the structure to produce the global mass matrix in the equation of the motion of fluid-structure interaction problem In order to demonstrate the accuracy and validity of the developed method the numerical results re compared with the previous studies. Finally the effects of the fluid-structure interaction on the natural frequency and dynamic response of the system are analyzed.

  • PDF

유체-구조물-지반 상호작용을 고려한 유체저장탱크의 3차원 지진해석 (three dimensional seismic analysis of liquid storage tanks considering liquid-structure-soil interaction)

  • 김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.99-106
    • /
    • 1999
  • In this study a base-isolated liquid storage tank subjected to seismic ground motion is numerically simulated on frequency , domain considering three-dimensional liquid-structure-soil interaction. A hybrid formulation which combines the versatility of finite elements for tank structure and the efficiency of boundary elements for liquid and soil region is adopted for efficient modeling. The base-isolation system using the effective stiffness and damping ratio is also included in this formulation. in order to demonstrate the accuracy and validity of the developed solution the numerical results were compared with the reference solutions in each interaction problem. The effects of the liquid filling ratio and the stiffness of base-isolation system on the behavior of the liquid storage tanks are analyzed.

  • PDF

사각형 탱크 보강판의 유체구조 연성진동에 대한 이론적 인구 (Analytical Study on Hydroelastic Vibration of Stiffened Plate for a Rectangular Tank)

  • 김극수;김대웅;이영범;;최수현;김용수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.65-68
    • /
    • 2005
  • In this paper, a theoretical study is carried out on the hydroelastic vibration of a rectangular tank wall. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to wall vibration. In addition, the vibration characteristics of stiffened wall of the rectangular tank are investigated. Assumed mode method is utilized to the stiffened plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method and then added mass effect is discussed due to tank length and potential mode.

  • PDF

Diffusion Range and Pool Formation in the Leakage of Liquid Hydrogen Storage Tank Using CFD Tools

  • Kim, Soohyeon;Lee, Minkyung;Kim, Junghwan;Lee, Jaehun
    • 공업화학
    • /
    • 제33권6호
    • /
    • pp.653-660
    • /
    • 2022
  • In liquid hydrogen storage tanks, tank damage or leakage in the surrounding pipes possess a major risk. Since these tanks store huge amounts of the fluid among all the liquid hydrogen process facilities, there is a high risk of leakage-related accidents. Therefore, in this study, we conducted a risk assessment of liquid hydrogen leakage for a grid-type liquid hydrogen storage tank (lattice-type pressure vessel (LPV): 18 m3) that overcame the low space efficiency of the existing pressure vessel shape. Through a commercially developed three-dimensional computational fluid dynamics program, the geometry of the site, where the liquid hydrogen storage tank will be installed, was obtained and simulations of the leakage scenarios for each situation were performed. From the computational flow analysis results, the pool formation behavior in the event of liquid hydrogen leakage was identified, and the resulting damage range was predicted.

연성해석을 이용한 초고압 DSES 온도상승예측 (An Estimation Technology of Temperature Rise in DSES using Three-Dimensional Coupled-Field Multiphysics)

  • 윤정훈;안희섭;최종웅;박석원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.847_848
    • /
    • 2009
  • This paper shows the temperature rise of the high voltage GIS bus bar. The temperature rise in GIS bus bar is due to Joule‘s losses in the conductor and the induced eddy current in the tank. The power losses of a bus bar calculated from the magnetic field analysis are used as the input data for the thermal analysis to predict the temperature. The required analysis is a couple-field Multiphysics that accounts for the interactions between three-dimensional AC harmonic magnetic and fluid fields. The heat transfer calculation using the fluid analysis is done by considering the natural convection and the radiation from the tank to the atmosphere. Consequently, because temperature distributions by couple-field Multiphysics (coupled magnetic-fluid) have good agreement with results of temperature rise test, the proposed couple-field Multiphysics technique is likely to be used in a conduction design of the single-pole and three pole-encapsulated bus bar in GIS..

  • PDF

연성해석을 이용한 초고압 모선부 온도 상승 예측 기술 (An Estimation Technology of Temperature Rise in GIS Bus Bar using Three-Dimensional Coupled-Field Multiphysics)

  • 윤정훈;안희섭;최종웅;오일성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.675-676
    • /
    • 2006
  • This paper shows the temperature rise of the high voltage GIS bus bar. The temperature rise in GIS bus bar is due to Joule's losses in the conductor and the induced eddy current in the tank. The power losses of a bus bar calculated from the magnetic field analysis are used as the input data for the thermal analysis to predict the temperature. The required analysis is a couple-field Multiphysics that accounts for the interactions between three-dimensional AC harmonic magnetic and fluid fields. The heat transfer calculation using the fluid analysis is done by considering the natural convection and the radiation from the tank to the atmosphere. Consequently, because temperature distributions by couple-field Multiphysics (coupled magnetic-fluid) have good agreement with results of temperature rise test, the proposed couple-field Multiphysics technique is likely to be used in a conduction design of the single-pole and three pole-encapsulated bus bar in CIS..

  • PDF

Effect of FRP composites on buckling capacity of anchored steel tanks

  • Al-Kashif, M.A.;Ramadan, H.;Rashed, A.;Haroun, M.A.
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.361-371
    • /
    • 2010
  • Enhancement in the seismic buckling capacity of steel tanks caused by the addition of fiber reinforced polymers (FRP) retrofit layers attached to the outer walls of the steel tank is investigated. Three-dimensional non-linear finite element modeling is utilized to perform such analysis considering non linear material properties and non-linear large deformation large strain analysis. FRP composites which possess high stiffness and high failure strength are used to reduce the steel hoop stress and consequently improve the tank capacity. A number of tanks with varying dimensions and shell thicknesses are examined using FRP composites added in symmetric layers attached to the outer surface of the steel shell. The FRP shows its effectiveness in carrying part of the hoop stresses along with the steel before steel yielding. Following steel yielding, the FRP restrains the outward bulging of the tank and continues to resist higher hoop stresses. The percentage improvement in the ultimate base moment capacity of the tank due to the addition of more FRP layers is shown to be as high as 60% for some tanks. The percentage of increase in the tank moment capacity is shown to be dependent on the ratio of the shell thickness to the tank radius (t/R). Finally a new methodology has been explained to calculate the location of Elephant foot buckling and consequently the best location of FRP application.