• 제목/요약/키워드: three-dimensional scanning system

검색결과 136건 처리시간 0.023초

Scanning Probe를 이용한 OMM(On the Machine Measuring) 시스템 개발 및 평가 (The Development and Evaluation of OMM(On the Machine Measuring) System Using Scanning Probe)

  • Kim, S.H.;Kim, I.H.
    • 한국정밀공학회지
    • /
    • 제13권10호
    • /
    • pp.71-77
    • /
    • 1996
  • This paper describes the development of on the machine measuring(OMM) system which can directlry measure the three dimensional machined dimensilnal accuracy using scanning probe in milling machine. Two algolithms, continuous path(CP) measurement using UC program and CAD data assisted point to point(PTP) measurement, were developed regarding specification of scanning probe. The OMM system was contructed to verify the developed system suing the proposed algorithm, and actually measured three kinds of machined TV shadow mask molds. The developed system was evaluated it's repeatability and compared with the current measurement system of CMM(Coording Measuring Machine) in terms of relative accuracy and time reduction and productivity increase.

  • PDF

광 스캐닝 홀로그래피를 이용한 양안식 3차원 홀로그래픽 영상 시스템 (Binocular Holographic Three-Dimensional Imaging System Using Optical Scanning Holography)

  • 김유석;김태근
    • 한국광학회지
    • /
    • 제26권5호
    • /
    • pp.249-254
    • /
    • 2015
  • 본 논문에서는 광 스캐닝 홀로그래피를 이용한 양안식 3차원 홀로그래픽 영상 시스템을 제안하였다. 양안식 3차원 홀로그래픽 영상 시스템을 구현하기 위하여 사람의 두 눈 사이의 거리와 동공의 크기를 고려하여 양안식 3차원 홀로그래픽 디스플레이 시스템을 설계한 뒤 실제 물체의 홀로그램 정보를 획득하였고 수치적인 신호 처리 후 세기 형태의 공간 광 변조기를 이용하여 광학적인 방법으로 복원하였다. 이를 통하여 광 스캐닝 홀로그래피를 이용한 양안식 3차원 홀로그래픽 영상 시스템의 구현 가능성을 실험적으로 확인하였다.

RGB-D 센서 및 3D Virtual Clothing CAD활용에 의한 패션소재의 동적표현 시스템에 대한 연구 (A Study on the Dynamic Expression of Fabrics based on RGB-D Sensor and 3D Virtual Clothing CAD System)

  • 이지은;김슬기;김종준
    • 패션비즈니스
    • /
    • 제17권1호
    • /
    • pp.30-41
    • /
    • 2013
  • Augmented reality techniques have been increasingly employed in the textile and fashion industry as well as computer graphics sectors. Three-dimensional virtual clothing CAD systems have also been widely used in the textile industries and academic institutes. Motion tracking techniques are grafted together in the 3D and augmented reality techniques in order to develop the virtual three-dimensional clothing and fitting systems in the fashion and textile industry sectors. In this study, three-dimensional virtual clothing sample has been prepared using a 3D virtual clothing CAD along with a 3D scanning and reconstruction system. Motion of the user has been captured through an RGB-D sensor system, and the virtual clothing fitted on the user's body is allowed to move along with the captured motion flow of the user. Acutal fabric specimens are selected for the material characterization. This study is a primary step toward building a comprehensive system for the user to experience interactively virtual clothing under real environment.

대면적 3 차원 마이크로 형상제작을 위한 스테이지 스캐닝 시스템을 이용한 이광자 흡수 광조형 공정 개발 (Development of Large-area Two-photon Stereolithography Process for the Fabrication of Large Three-dimensional Microstructures)

  • 임태우;손용;이신욱;공홍진;박상후;양동열
    • 한국정밀공학회지
    • /
    • 제25권1호
    • /
    • pp.122-129
    • /
    • 2008
  • Two-photon stereolithography is recognized as a promising process for the fabrication of three-dimensional (3D) microstructures with 100 nm resolution. Generally, beam-scanning system has been used in the conventional process of two-photon stereolithography, which is limited to the fabrication of micro-prototypes in small area of several tens micrometers. For the applications to 3D high-functional micro-devices, the fabrication area of the process is required to be enlarged. In this paper, large-area two-photon stereolithography (L-TPS) employing stage scanning system has been developed. Continuous scanning method is suggested to improve the fabrication speed and parameter study is conducted. An objective lens of high numerical aperture (N.A.) and high strength material were employed in this system. Through this work, 3D microstructures of $600*600*100\;{\mu}m$ were fabricated.

THE LASER-BASED AGGREGATE SCANNING SYSTEM: CURRENT CAPABILITIES AND POTENTIAL DEVELOPMENTS

  • 김형관
    • 건설관리
    • /
    • 제4권1호
    • /
    • pp.48-54
    • /
    • 2003
  • An automated system for scanning and characterizing unbound aggregates, called the 'Laser-based Aggregate Scanning System'(LASS), has been developed at the University of Texas at Austin. The system uses a laser profiler to acquire and analyze true three-dimensional data on aggregate particles to measure various morphological properties. Tests have demonstrated that the system can rapidly and accurately measure grain size distribution and dimensional ratios, and can objectively quantify particle shape, angularity, and texture in a size invariant manner. In its present state of development, the LASS machine is a first-generation, laboratory testing device. With additional development, this technology is expected to provide high-quality, detailed information for laboratory and on-line quality control during aggregate production.

Scanning Stereoscopic PIV for 3D Vorticity Measurement

  • SAKAKIBARA Jun;HORI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.1-13
    • /
    • 2004
  • A scanning stereo-PIV system was developed to measure the three-dimensional distribution of three-component velocity in a turbulent round jet. A laser light beam produced by a high repetition rate YLF pulse laser was expanded vertically by a cylindrical lens to form a laser light sheet. The light sheet is scanned in a direction normal to the sheet by a flat mirror mounted on an optical scanner, which is controlled by a programmable scanner controller. Two high-speed mega-pixel resolution C-MOS cameras captured the particle images illuminated by the light sheet, and stereoscopic PIV method was adopted to acquire the 3D-3C-velocity distribution of turbulent round jet in an octagonal tank filled with water. The jet Reynolds number was set at Re=1000 and the streamwise location of the measurement was fixed at approximately x = 40D. Time evolution of three-dimensional vortical structure, which is identified by vorticity, is visualized. It revealed that the existence of a group of hairpin-like vortex structures was quite evident around the rim of the shear layer of the jet. Turbulence statistics shows good agreement with the previous data, and divergence of a filtered (unfiltered) velocity vector field was $7\%\;(22\%)$ of root-me an-squared vorticity value.

  • PDF

Three-Dimensional Phase-Only Holographic Correlation

  • Kim, Tae-Geun
    • Journal of the Optical Society of Korea
    • /
    • 제5권3호
    • /
    • pp.99-109
    • /
    • 2001
  • This paper presents a phase-only modulation scheme for a three-dimensional (3-D) image matching system to improve optical efficiency of the system. The 3-D image matching system is based on the two mask heterodyne scanning. A hologram of the 3-D reference object is first created and then the phase of the hologram is extracted. The phase of the hologram is represented as one mask with the other mask being a plane wave. The superposition of each beam modulated by the two masks generated a scanning beam pattern. This beam pattern scans the 3-D target object to be recognized. The output of the scanning system gives out the correlation of the phase-only hologram of the reference object and the complex hologram of the target object. Since a hologram contains 3-D information of an object as a form of fringe pattern, the correlation of holograms matches whole 3-D aspect of the objects. Computer simulations are performed with additive gaussian noise and without noise for the complex hologram modulation scheme and the phase-only hologram modulation scheme. The computer simulation results show that the phase-only hologram modulation scheme improves the optical efficiency. Thus the system with the phase-only hologram modulation scheme is more robust than the system with the complex hologram modulation scheme.

대형 싱크홀 재난 현장 조사용 3차원 형상화 장비 구현 (Fabrication of Three-Dimensional Scanning System for Inspection of Massive Sinkhole Disaster Sites)

  • 김수로;윤호근;김상욱
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.341-349
    • /
    • 2020
  • Recently, interest in ground subsidence in urban areas has increased after a large sinkhole occurred near the high-story building area in Jamsil, Seoul, Korea, in 2014. If a massive sinkhole occurs in an urban area, it is crucial to assess its risk rapidly. Access to humans for on-site safety diagnosis may be difficult because of the additional risk of collapse in the disaster area. Generally, inspection using drones equipped with high-speed lidar sensors can be utilized. However, if the sinkhole is created vertically to a depth of 100 m, similar to the sinkhole in Guatemala, the drone cannot be applied because of the wireless communication limit and turbulence inside the sinkhole. In this study, a three-dimensional (3D) scanning system was fabricated and operated using a towed cable in a massive vertical sinkhole to a depth of 200 m. A high-speed lidar sensor was used to obtain a continuous cross-sectional shape at a certain depth. An inertial-measuring unit was applied to compensate for the error owing to the rotation and pendulum movement of the measuring unit. A reconstruction algorithm, including the compensation scheme, was developed. In a vertical hole with a depth of 180 m in the mining area, the fabricated system was applied to scan 0-165 m depth. The reconstructed shape was depicted in a 3D graph.

스테레오 X-선 검색장치를 이용한 3차원 정보 가시화에 관한 연구 (The Geometric Modeling for 3D Information of X-ray Inspection)

  • 황영관;이승민;박종원
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.145-149
    • /
    • 2014
  • In this study, using X-ray cargo container scanning device and to differentiate the concept of three-dimensional information extraction applied for X-ray scanning device as an ingredient in the rotation of the X-Ray Linear Pushbroom Stereo System by introducing the geometric How to model was introduced. Three-dimensional information obtained through the matching of a single voxel space filled with a random vector operations for each voxel in the three dimensional shape reconstruction algorithm using the definition, and in time, the time required for each step were analyzed. Using OpenCV in each step by applying parallelization techniques approximately 1.8 times improvement in the processing time of the check, but do not meet the target within one minute levels. The other hand, X-ray images by the primary process to convert the point View the results of real-time stereo through a three-dimensional could feel the comfort level.

레이저 비전 기술을 이용한 물체의 3D 모델 재구성 방법에 관한 연구 (A Study on Three-Dimensional Model Reconstruction Based on Laser-Vision Technology)

  • 응후쿠옹;이병룡
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.633-641
    • /
    • 2015
  • In this study, we proposed a three-dimensional (3D) scanning system based on laser-vision technique and rotary mechanism for automatic 3D model reconstruction. The proposed scanning system consists of a laser projector, a camera, and a turntable. For laser-camera calibration a new and simple method was proposed. 3D point cloud data of the surface of scanned object was fully collected by integrating extracted laser profiles, which were extracted from laser stripe images, corresponding to rotary angles of the rotary mechanism. The obscured laser profile problem was also solved by adding an addition camera at another viewpoint. From collected 3D point cloud data, the 3D model of the scanned object was reconstructed based on facet-representation. The reconstructed 3D models showed effectiveness and the applicability of the proposed 3D scanning system to 3D model-based applications.