• Title/Summary/Keyword: three-dimensional numerical simulation

Search Result 885, Processing Time 0.026 seconds

COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY (단일 공동주위의 2차원과 3차원 초음속 유동 비교)

  • Woo C.H.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF

Numerical simulation of non-isothermal flow in oil reservoirs using a two-equation model

  • dos Santos Heringer, Juan Diego;de Souza Debossam, Joao Gabriel;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.147-168
    • /
    • 2019
  • This work aims to simulate three-dimensional heavy oil flow in a reservoir with heater-wells. Mass, momentum and energy balances, as well as correlations for rock and fluid properties, are used to obtain non-linear partial differential equations for the fluid pressure and temperature, and for the rock temperature. Heat transfer is simulated using a two-equation model that is more appropriate when fluid and rock have very different thermal properties, and we also perform comparisons between one- and two-equation models. The governing equations are discretized using the Finite Volume Method. For the numerical solution, we apply a linearization and an operator splitting. As a consequence, three algebraic subsystems of linearized equations are solved using the Conjugate Gradient Method. The results obtained show the suitability of the numerical method and the technical feasibility of heating the reservoir with static equipment.

A study on the pulsatile flow characteristics of Newtonian and non-Newtonian fluids in the bifurcated tubes (분기관내 뉴턴유체와 혈액의 맥동유동특성에 관한 연구)

  • Seo, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3607-3619
    • /
    • 1996
  • Experimental and numerical studies for three-dimensional pulsatile flows are conducted to investigate the flow characteristics in the bifurcated tubes. Velocity measurements in experimental study were made by both Pulsed Doppler Ultrasound(PDU) machine and Laser Doppler Anemometer(LDA) system. Glycerin is used for experimental study. Experimental results are used to verify the results of the numerical simulation. Flow characteristics of Newtonian fluid and blood in the bifurcated tubes under the steady and pulsatlie flows are numerically investigated. Finite volume method is employed for three-dimensional numerical simulations. Blood is considered as a non-Newtonian fluid and the constitutive equation of blood is used for the numerical analysis. Numerical analyses are focused on the flow patterns for various branch angles ranging from 30.deg. to 90.deg. and diameter ratios such as 1.0, 0.8, and 0.6. Pulsatile flow characteristics of blood are compared with those of Newtonian fluid. Parameter effects on axial velocity, pressure and wall shear stress distribution along the bifurcated tubes are discussed in terms of the branch angle, diameter ratio, and Reynolds number.

NUMERICAL ANALYSIS OF TUNNEL FLOW INDUCED BY JET FAN (제트팬 운전에 의해 형성되는 터널내 유동에 대한 수치적 해석)

  • Kim, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.10-13
    • /
    • 2010
  • The flow field in road tunnel is influenced by some facts such as piston effect of vehicle's move, operation of ventilation facilities, natural wind and buoyancy effect of fire plume. Among those, jet fan is one of main ventilation facilities especially in longitudinal ventilation system of tunnel. In this study to analyze tunnel flow induced by operation of jet fan, numerical simulation has been carried out. The velocity distributions and streamlines in tunnel are examined to consider the three-dimensional characteristics of tunnel flow caused by jet fan.

  • PDF

NUMERICAL SIMULATION AND VISUALIZATION OF THE FLOW AROUND THE DARIUS WIND TURBINE

  • Lee Mi Young;Kawamura Tetuya
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2005
  • A fundamental understanding of the flow around the wind turbine is important to investigate the performance of new type of wind turbine. This study presents the simulation of three dimensional flow fields around the Darius wind turbine as an example. Incompressible Navier-Stokes equations are used for this simulation. The rotating coordinate system that rotates in the same speed of the turbine is used in order to simplify the boundary condition on the blades. Additionally, the boundary fitted coordinate system is employed in order to express the shape of the blades precisely. Fractional step method is used to solve the basic equations. Third order upwind scheme is chosen for the approximation of the non-linear terms since it can compute the flow field stably even at high Reynolds number without any turbulence models. The flow fields obtained in this study are highly complex due to the three dimensionality and are visualized effectively by using the technique of the computer graphics.

Numerical Simulation of the Formation of Linear Dunes

  • ZHANG Ruyan;SATO Yuko;KAN Makiko;KAWAMURA Tetuya
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.211-212
    • /
    • 2003
  • Three dimensional flow above a sand dune has been studied numerically by using Large-Eddy Simulation (LES) method. The movement of the sand which is formed by converging wind directions has been investigated. The numerical method employed in this study can be divided into three parts: (i) calculation of the air flow above the sand dune using MAC method with a generalized coordinate system; (ii) estimation of the sand transfer caused by the flow through the friction; (iii) determination of the shape of the sand surface. Since the computational area has been changed due to step (iii), (i)­(iii) are repeated. The simulated dune, which has initially elliptic cross section, extending at the converging direction which is known as linear dunes.

  • PDF

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.

Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates (연강 판재에 대한 연강 구의 고속경사충돌 수치해석)

  • Yu, Yo-Han;Jang, Sun-Nam;Jeong, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Development of a Three-Dimensional DNS Code for Study of Clean Agents -Two-Dimensional Simulation of Diluted Nonpremixed Counterflow Flames-

  • Park, Woe Chul;Hamins, A.
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • A mixture fraction formulation is used to numerically simulate the structure of diluted axisymmetric methane-air nonpremixed counterflow flames. The effects of global strain rate and gravity wert! investigated and results were compared. Fuel of a mixture of 20% methane and 80% nitrogen by volume and oxidizer of pure air at low and moderate global strain rates $a_g= 20, 40, 80 s^{-1}$ in normal and zero gravity were computed. It is shown that the numerical method is capable of predicting the structure of counterflow flames in normal and microgravity environments at low and moderate global strain rates.

Finite Element and Boundary Element Modelling of the Acoustic Wave Transmission in Mean Flow Medium

  • Tsuchiya, Takao;Kagawa, Yukio;Tsuji, Takuya
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.209-214
    • /
    • 2001
  • Acoustic field in steady-state is characterized by a Helmholtz equation. The transmission characteristics of acoustic wave devices is however influenced by the presence of the mean flow in the medium. The effect of the mean How introduces additional terms in the equation. In the present paper, two approaches are considered. One is that the equation is directly discretized by FEM for one-dimensional and the axisymmetric case. Another is that the equation is first transformed into the standard Helmholtz equation which is solved by BEM. The numerical demonstrations are made for the axisymmetric FEM and the three-dimensional BEM modeling. The numerical examination for a straight circular duct is first considered. The solutions are compared wish the analytical ones. The examination is then extended to the case when the mean How is locally present in a muser with expansion chamber.

  • PDF