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ABSTRACT

Acoustic field in steady-state is characterized by
Helmholtz equation. The transmission characteris-
tics of acoustic wave devices is however influenced
by the presence of the mean flow in the medium.
The effect of the mean flow introduces additional
terms in the equation. In the present paper, two ap-
proaches are considered. ‘One is that the equation is
directly discretized by FEM for one-dimensional and
the axisymmetric case. Another is that the equa-
tion is first transformed into the standard Helmholtz
equation which is solved by BEM. The numerical
demonstrations are made for the axisymmetric FEM
and the three-dimensional BEM modeling. The nu-
merical examination for a straight circular duct is
first considered. The solutions are compared with
the analytical ones. The examination is then ex-
tended to the case when the mean flow is locally
present in a muffler with expansion chamber.

1 INTRODUCTION

A duct with variable cross-section is the acoustic
wave transmission system which has an important
field of applications, and its numerical solution has
been conducted by many investigators [1)-[6]. Its
acoustic wave transmission characteristic is however
affected by the presence of the medium motion. The
first of all, the propagation velocity may decrease for
the waves against the stream while it may increase
for the waves along the stream. This is the case
when the waves transmit in the exhaust muffler of
automobiles.

In the present paper, the formulation is extended
to the case of the general impedance termination
in one-dimension. The numerical solution by the

finite element approach is compared with the an-
alytical solution. The finite element modelling is
then applied to the axisymmetric case in which the
formulation is made both for the original and trans-
formed coordinates. The boundary element coun-
terpart presented by Zhenlin et al [5] is extended to
the case of the partial mean flow, which is treated
by the partition domain approach. Numerical ex-
amples for the duct with an expansion chamber are
then demonstrated. All the treatments are made for
the steady-state waves in frequency domain. For
the time domain wave propagation in mean flow,
the present authors proposed the discrete Huygens
approach [7].

2 GOVERNING EQUATIONS

‘We here consider the sound wave propagation in a
medium with uniform and steady-state mean flow.
The medium is also assumed to be homogeneous
and non-dissipative. In the steady-state harmonic
motion, the Helmholz equation is given by [7]

V2 + k%0
— §2k(M -V®) — (M - V)(M - V®) =0 (1)

where ® is the velocity potential, k = w/cp is the
wave number, w is the angular frequency, ¢g is the
sound speed at the small amplitude, M = V;/¢p is
the Mach number of the mean flow and Vj is veloc-
ity of the mean flow. In the following analysis, the
medium is assumed to be moving only in 2 direction,
so that the governing equation is given by
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Ved + k°® — 2k M, 3 M; 552

where M, is the mean flow Mach number in z di-
rection.

With the following coordinate and variable trans-

=0 (2
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formations,

k
—— (3)
V1= M?2

(4)

equation (2) leads to the standard Helmholtz equa-

z

V1—-MZ

f=z, §=y, 2= k=

P = pe—ikM:z

tion with respect to P as

V20 + k2 =0 (5)
where V2 is the Laplacian operator in the trans-
formed coordinates. This expression is numerically
solved by Zhenlin et al [5] with the help of the
boundary element approach. The equation is sim-
plified at the expense of the complicated boundary
conditions. This means that the numerical analysis
program such as the finite elements or boundary el-
ements developed for the standard Helmholtz equa-
tion can be used without modification, but with the
potential and the boundary conditions re-defined.

3 ONE-DIMENSIONAL FIELD
3.1 Analytical solution

Now we consider the wave transmission in the
duct as shown in Figure 1. The duct is driven by
uniform velocity Up at one end (z = 0) and it is ter-
minated by the surface acoustic impedance Zr at
another end (z = £). The boundary conditions for
this case correspond to

2-_2-0 (z=0)
92 =8 — _jk Ll ® (2=1) (6)
%% =0 (wall boundary)

where 8/0n is the normal derivative to the bound-
ary, B = Zr/(poco) is the normalized termination
impedance and pg is the medium density.

For the one-dimensional filed in which the wave
propagates toward z direction, the equation (2) is
reduced to

o

2
= M3)8—2 + k?® — j2kM,— =0 (7)
15) 0z

mean ﬂov«/r in z direction
velocity driv-
ing with Uo

\ rigid wall

» impedance

Fig. 1 A duct in mean flow.

termination

The analytical solution for the sound pressure under
the boundary condition (6) is

_EA—Q4Mz)2)
1-M2

—(poco — Zr)e

P(Z) = A
(poco — Zr)e " +-M2
K= (1= Mj)s)
+(poco + ZT)€] 1=M

; el pOCOUO
1-—- M§

(8)
+(poco + ZT)e

3.2 Finite element formulation

We are to solve equation (7) by the finite element
method. The equation is discretized in space by a
Galerkin’s procedure. The weak formation is

/Q{(l M3 a k<p<I>+]2kMz<p$}dz

.. a<1>

(9)
where ¢ is a weighting function. In the Galerkin’s
method, the weighting function is usually chosen to
be the test function (¢ = ®). The right hand side of
equation (9) corresponds to the boundary condition.
For the one-dimensional analysis, the region to be
analyzed is divided into line elements. The velocity
potential in an element is interpolated by the nodal
velocity potentials so that

o = {N}T{}. (10)

where {®}, is the nodal velocity potential vector,
{N} is the interpolation function vector. The su-
perscript T denotes the transpose of matrix or vec-
tor. The velocity potential is here assumed to be
linearly interpolated within the line element.

Substituting equation (10) into (9), one has the
discretized equation

{Q - M2)[M)e — K*[K]e + jk(2M,[V].

=M 7103 (@) = Ual1 - M2)(W)

ﬂT + M, € €
where [M]e, [K]e, [V]e and [J]. are inertance, elas-
tance matrices, the matrix associated with mean
flow and the wall dissipation and {W}. is the dis-
tribution vector. It should be noted that the matrix
[V]e associated with the mean flow is nonsymmetric.
The presence of the low may influence the damping.

(11)
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4 AXISYMMETRIC FIELD
4.1 Finite element formulation in original
coordinates
For the axisymmetric filed, the equation (2) can

be expressed as
o [ 8% )0 [ 09 .
o ( ) + (1 MZ)-B—Z (7'5;) +rk°®
. %
- JZrk.Mz:?; =0 (12)

Galerkin’s procedure for the axisymmetric filed
leads to another weak form as

//{ g03<1>+ (1__M2)6<p8<1> rk2p®

+ j2rkMyp . }drdz = 27r/ r(l — Mz)goa—dF(IB)

In the axisymmetric case, the cross sectional area
to be analyzed is divided into triangular ring ele-
ments. The test function is expressed as the same
form as equation (10) with three nodes. The final
discretized form is the same as equation (11).
4.2 Formulation in transformed coordinates
In the transformed coordinates, the Helmholtz
equation is obtained from equation (5). For the
cylindrical coordinates, the expression is

8 (0%) 8 (0% oz

The normal derivative to the boundary or flux can
be expressed as
8% oo 871 0z TS
~ — jkM,® kM2 15
B <6n o a~) ¢ (15)
So the boundary conditions corresponding to equa-
tion (6) are

2 = oy -

jEM,® (z=0)

a
aZ = —jk G ® (z=1¢) (16)
%%" =0 (wall boundary)

Galerkin’s procedure for equation (14) leads to the
expression of weak form of

&p (9<I> 8(,0 B(P T~ o~
2 // (TEE T35 e -7k go@) drdz
=2r g(,ljdl" (17)

where @ is a weighting function. The test function
is chosen as

d = {N}T{d},
where {®}. is the nodal velocity potential vector in

the transformed coordinates. The discretized equa-
tion in the transformed coordinates is derived as

(IM). - B[R] + 5klJ). ) {3}

=Uoy/1- M2{W},

where {M]., K], and [J]. are inertance, elastance
and damping matrix associated with the termina-
tion wall in the transformed coordinates and {W},
is the distribution vector in the transformed coor-
dinates. The discretized equation is the same as
the ordinary finite element expression. This means
that the finite element program developed for the
standard Helmholtz equation can be used without
modification, but with the potential or the bound-
ary conditions re-defined as given in equations (4)
and (16).

5 BOUNDARY ELEMENT FORMULA-
TION

The formulation here presented is somewhat mod-
ified from that of Zhenlin [5]. To avoid confusion,
the Helmholtz equation in the transformed coor-
dinates (equation (5)) is used instead of equation
(2). The boundary element integral expression cor-
responding to equation (5) is

(18)

(19)

~ ~,00 9%d* -
Ci%; = /F <<I> e @) dr (20)
where ®* is the fundamental solution
§* = _L_i*E (21)
47TR

which is Green’s function without particular bound-
ary condition imposed and R is the distance from a
source point to the consideration point. C; is a co-
efficient related to the solid angle at point #, which
becomes 1/2 if the boundary is smooth. By dividing
the boundary I into the surface boundary elements
to execute an integral evaluation of equation (20),
the discretized equation is obtained for the velocity
potential ® and the flux § defined at the element
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nodes [9], [10], so that
[H1{®} = [C}{a}

By the help of equations (4) and (15), the equa-
tion (22) can be transformed into the expression at

(22)

original coordinates,

[H){2} = [G]{q} (23)
where the components of [H] and [G] are
= M iy 925 ML
Hij = Hi]-e JRM=22; +]kMz—a—;_iGije JeMz 24 (24)
~ M on
Gy = Gye Mo 2 (25)

The equation (23) shows that the special care is not
required for the boundary condition at the expense
that the re-evaluation of the components in the co-
efficient matrices are made. The boundary element
program developed for 3-D acoustic field [9] cannot
be used as it is, which must be modified so that the
coefficient matrices are re-evaluated.

6 NUMERICAL DEMONSTRATIONS

For the numerical demonstrations we consider two
ducts: one is a simple duct as shown in Fig.2 in
which three models are given, and another is a muf-
fler with expansion-chamber as shown in Fig.3 in
which two models are given. The length of the ducts
is £ = 120mm and the radius is 10mm but the ex-
pansion chamber whose radius is 20mm. The duct
is driven at one end (z = 0) by the uniform veloc-
ity Up = 1m/sec and at another end (z = £) it is
terminated by the sound absorber with the surface
acoustic impedance Z7. Other wall boundary is as-
sumed to be rigid.

=120

z

i N
(a) one-dimensional FEM model  impedance
termination Zp=p,c,

T rgid wall

velocity driving
Ugp=1m/sec

(b) axisymmetric FEM model

rgid wall

impedance
termination
ZT=poCo

unit in mm (c) three-dimensional BEM model

Fig. 2 A simple duct
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Fig. 3 Muffler
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Fig. 4 Sound pressure and phase along the central z
axis in a simple duct.

6.1

The sound pressure distributions along the central
z axis are shown in Fig.4 when the duct is termi-
nated by the characteristic impedance Z1 = poco.
No reflection from the termination is occurred be-
cause the end is terminated by the characteris-
tic impedance. The effective wavelength becomes
longer as the mach number increases. The finite
element solutions well agree with the analytical so-
lution (8) within the error of 0.03%. In the bound-
ary element solution, the slight reflection is observed
due to the improper edge discretization. The error
is smaller in phase than the amplitude. The bound-
ary element solution for the wavelength is evaluated
slightly longer than the analytical solution. The

A simple duct
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Fig. 6 Sound pressure and phase along the central z
axis in the muffler.

transfer frequency characteristics for the sound pres-
sure at the center of the termination wall are shown
in Fig.5.
6.2 A muffler with expansion chamber
Fig.6 shows the sound pressure distributions of
the muffler when mean flow is uniformly present.
There are some differences in amplitude between fi-
nite element and boundary element solutions but

8000 [ — axisymmetric FEM
- - - three-dimensional 5
:/:5 6000 BEM (a) amplitude
D
E 4000 M=03
pe M=02
a.
£ 2000+ M=0
0 [ —— 1 L 1 et
0 1000 2000 3000 4000 5000

Frequency (Hz)

(b) phase

Phase (rad.
<

T2 J SN

M=0
- |
0 1000

N SNl |
2000 3000 4000 5000
Frequency (Hz)
Fig. 7 Frequency characteristics of the sound pressure
at the terminated end in the muffler.

the differences are small in phase. Fig.7 shows the
frequency transmission characteristics of the muffler
when mean flow is uniformly present. The resonance
peaks move lower in frequency as the Mach number
increases.
6.3 Characteristics when the partial mean
flow is present 4

In conventional muffler systems, the flow is re-
stricted only in the central region and may not
present in the expanded part of the chamber. The
partial mean flow can easily be incorporated in the
modelling with FEM. In order to consider the par-
tial mean flow in the boundary element modelling,
the field is divided into two domains as shown in
Fig.8 in which the simple duct with the uniform
mean flow (domain ;) is coupled to the expansion

Fig. 8 Partitioned boundary element model of a muf-
fler.
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Fig. 9 Comparison between the sound pressure distri-
butions with the uniform mean flow and the par-
tial mean flow for M = 0.3.

chamber without flow (domain £23). Continuity con-
ditions are imposed over the connecting surface.

Fig.9 shows the sound pressure distributions both
with the uniform mean flow and the partial mean
flow for M = 0.3. Reasonable agreement is
achieved. When the mean flow is partially present,
the amplitude decreases and comes closer to the one
with no flow.
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