• Title/Summary/Keyword: three-dimensional motion analysis

Search Result 536, Processing Time 0.028 seconds

Dynamic Response Analysis of Tension Leg Platforms in Multi-directional Irregular Waves (Frequency Domain Analysis) (다방향 불규칙파중의 TLP의 동적응답해석 (주파수영역 해석))

  • 구자삼;조효제;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.23-32
    • /
    • 1994
  • A numerical procedure is described for simultaneously predicting the motion and structural responses of tension leg platforms (TLPs) in multi-directional irregular waves. The developed numerical approach is based on a combination of a three dimensional source distribution method, the finite element method for structurally treating the space frame elements and a spectral analysis technique of directional waves. The spectral description for the linear responses of a structure in the frequency domain is sufficient to completely define the responses. This is because both the wave inputs and the responses are stationary Gaussian ran dom process of which the statistical properties in the amplitude domain are well known. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural analysis. The effect of wave directionality has been pointed out on the first order motion, tether forces and structural responses of a TLP in multi-directional irregular waves.

  • PDF

Numerical Sloshing Analysis of LNG Carriers in Irregular Waves (실해역 상태를 고려한 LNG 선박의 SLOSHING 해석)

  • Park Jong Jin;Kim Mun Sung;Kim Young Bok;Ha Mun Keun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.38-43
    • /
    • 2005
  • The present study is concerned with the numerical analysis of the sloshing impact pressure of the Liquefied Natural Gas (LNG) carriers in rough sea. The reliable predictions of the both random tank motions in irregular waves and violent fluid flow in the LNG tanks are required for practical sloshing analysis procedure of LNG carriers. The three-dimensional numerical model adopting SOLA-VOF scheme is used to predict violent free surface movements of LNG tank in irregular motions. For accurate input motion of tank, a three-dimensional panel method program called SSMP (Samsung Ship Motion Program) is applied for seakeeping analysis. Comparison studies of sloshing analysis are carried out for No.2 tank of 138K and 205K LNG carriers to verify the safety of the LNG containment system of the proposed 205K large LNG carrier.

  • PDF

Dynamics in Carom and Three Cushion Billiards

  • Han Inhwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.976-984
    • /
    • 2005
  • This paper presents the analysis results of dynamics in the billiards game within the frame­work of rigid-body mechanics and a numerical simulation program. The friction exists between the ball and the table bed as well as between the ball and the rail. There are three parts in the dynamic behavior of the ball on the table bed; motion of the ball on the table bed, collision between balls, and collision between the ball and the cushion. During the development of the simulation program, the dynamics problems such as rolling motion and three-dimensional frictional impact motion have been analyzed in detail. The theoretical issues are implemented into a viable graphic simulation program and its efficacy is demonstrated through the experi­mental validation of the billiards game. The resulting analysis results are verified quantitatively and qualitatively using high-speed video camera. Through the experimental tests, it was found that the physical parameters such as coefficients of restitution and friction vary according to the motion variables and corresponding empirical formulations were developed. The simulation and experimental results agree well.

Three dimensional finite element analysis of static deflections of a machine tool structures (3차원 유한요소 모델링을 통한 공작기계 구조의 정적 변형도 해석)

  • 김현석;이수정;정광섭;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.638-643
    • /
    • 1993
  • The three dimensional finite element models for the basic deflection of linear motion guides and ball screws were developed. Form the comparison of the results calculated by the finite element method with those by the experiment, it was proved that the modeling method might be applied to real machine tool structures. Form the structural analysis of the headstock of the machine tool, it was found that the static stiffness was calculated within 6.5% error

  • PDF

Reliability of Quantifying Maximal Mouth Opening and Lateral Mandibular Shift in Individuals With and Without Temporomandibular Disorder Using Three-dimensional Ultrasound-based Motion Analysis

  • Oh, Jae-seop;Kim, Si-hyun;Kyung, Moon-su;Park, Kyue-nam
    • Physical Therapy Korea
    • /
    • v.26 no.3
    • /
    • pp.99-105
    • /
    • 2019
  • Background: Although magnetic resonance imaging is accurate, it is expensive to measure the movement of temporomandibular joint. The three-dimensional (3D) motion analysis system is an inexpensive measurement tool. Objects: This study examined the reliability of quantifying the mouth opening and lateral mandibular shift and differences between individuals with and without temporomandibular disorder (TMD) using the hygienic method of surface markers on the skin with 3D ultrasound-based motion analysis. Methods: This study included 24 subjects (12 with and 12 without TMD). Temporomandibular joint motion during mouth opening was recorded using two surface markers with 3D ultrasound-based motion analysis. An intraclass correlation coefficient [ICC (3,k)] was used to confirm the intrarater reliability of quantifying kinematic temporomandibular joint motion, and an independent t-test was used to evaluate differences in maximal mouth opening and lateral mandibular shift between the two groups. Results: Assessment of mouth opening and lateral mandibular shift showed excellent test-retest reliability with low standard error of measurement. The lateral mandibular shift and opening-lateral mandibular shift ratio were significantly increased in the TMD group during maximum mouth opening (p<.05). However, no significant difference in maximal mouth opening was observed between the groups with and without TMD (p>.05). Conclusion: This hygienic and simple surface marker method can be used to quantify the mouth opening and lateral mandibular shift at the end-range of mouth opening. The TMD group showed an increased lateral mandibular shift movement at the end-range of mouth opening. The lateral mandibular shift movement can be regarded as a symptom in the diagnosis and treatment of TMD.

Accuracy and Reliability of The Spine-Pelvis Monitor to Record Three-Dimensional Characteristics of The Spine-Pelvic Motion

  • Kim, Jung-Yong;Yoon, Kyung-Chae;Min, Seung-Nam;Yoon, Sang-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.345-352
    • /
    • 2012
  • Objective: The aim of this study is to evaluate the accuracy and reliability of Spine-Pelvis Monitor(SPM) that was developed to measure 3-dimensional motion of spine and pelvis using tilt sensor and gyro sensor. Background: The main cause of low back pain is very much associated with the task using the low back and pelvis, but no measurement technique can quantify the both spine and pelvis. Method: For testing the SPM, 125 angles from three anatomical planes were measured three times in order to evaluate the accuracy and reliability. The accuracy of SPM in measuring dynamic motion was evaluated using digital motion analysis system. The motion pattern captured by two measuring methods was compared with each other. In result, the percentage error and Cronbach coefficient alpha were calculated to evaluate the accuracy and reliability. Results: The percentage error was 0.35% in flexion-extension on sagittal plane, 0.43% in lateral bending on coronal plane, and 0.40% in twisting on transverse plane. The Cronbach coefficient alpha was 1.00, 0.99 and 0.99 in sagittal, coronal and transvers plane, respectively. Conclusion: The SPM showed less than 1% error for static measurement, and showed reasonably similar pattern with the digital motion system. Application: The results of this study showed that the SPM can be the measuring method of spine pelvis motion that enhances the kinematic analysis of low back dynamics.

Feasibility Study of Gait Recognition Using Points in Three-Dimensional Space

  • Kim, Minsung;Kim, Mingon;Park, Sumin;Kwon, Junghoon;Park, Jaeheung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.124-132
    • /
    • 2013
  • This study investigated the feasibility of gait recognition using points on the body in three-dimensional (3D) space based on comparisons of four different feature vectors. To obtain the point trajectories on the body in 3D, gait motion data were captured from 10 participants using a 3D motion capture system, and four shoes with different heel heights were used to study the effects of heel height on gait recognition. Finally, the recognition rates were compared using four methods and different heel heights.

Kinematic and Kinetic Analysis of the Soft Golf Swing using Realistic 3D Modeling Based on 3D Motion Tracking

  • Kim, Yong-Yook;Kim, Sung-Hyun;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.744-749
    • /
    • 2007
  • Kinematic and kinetic analysis has been performed for Soft Golf swings utilizing realistic three dimensional computer simulations based on three dimensional motion tracking data. Soft Golf is a newly developed recreational sport in South Korea aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. This paper tries to look into kinematic and kinetic aspects of soft golf swings compared to regular golf swing and find the advantages of lighter Soft Golf clubs. For this purpose, swing motions of older aged participants were captured and kinematic analysis was performed for various kinematic parameters such as club head velocity, joint angular velocity, and joint range of motions as a pilot study. Kinetic analysis was performed by applying kinematic data to computer simulation models constructed from anthropometric database and the measurements from the participants. The simulations were solved using multi-body dynamics solver. Firstly, the kinematic parameters such as joint angles were obtained by solving inverse dynamics problem based on motion tracking data. Secondly, the kinetic parameters such as joint torques were obtained by solving control dynamics problem of making joint torque to follow pre-defined joint angle data. The results showed that mechanical loadings to major joints were reduced with lighter Soft Golf club.

The Effect of Thoracic Posture on The Shoulder Range of Motion and on Three-Dimensional Scapular Kinematics (흉추 자세가 견관절 가동범위와 3차원적 견갑골 운동학에 미치는 영향)

  • Park, Seung-Kyu;Han, Song-E
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.197-204
    • /
    • 2010
  • Scapular position and motion are essential for normal upper limb mobility; Further, the posture of patients with thoracic kyphosis is related to shoulder girdle function and disorder. The purpose of this study was to examine the effects of thoracic posture on the shoulder range of motion and on three-dimensional scapular kinematics. Thirty healthy subjects performed right-arm abduction along the frontal plane while standing in both erect and in slouched trunk posture. The scapular position and rotation, and shoulder and thoracic angles were recorded using a motion analysis system. The scapular upward rotation and internal rotation were significantly altered according to postural tatiges; however, scapular tilt was not affected. Shoulder angle was significantly decreased in the slouched posture as c rpared to tatt in the erect posture. Thus, a slouched posture(thoracic kyphosis) significantly affects the shoulder range of motion and scapular kinematics during shoulder abduction in the frontal plane.

Comparative Study on the Radiation Techniques for the Problem of Floating Body Motion with Forward Speed (전진 속도를 가지는 부유체 운동 문제에 대한 방사기법 비교 연구)

  • Oh, Seunghoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.396-409
    • /
    • 2019
  • In this paper, a comparative study on the radiation techniques for the motion analysis of the three dimensional floating structure with the forward speed was carried out. The Sommerfeld radiation condition, the damping technique, and the point shift technique were used for the comparative study. Radiated wave patterns and hydrodynamic coefficients of the heave motion of floating structure with the forward speed were compared and analyzed. The characteristics and limitations of each radiation technique were analyzed through the calculation results. To overcome the limitations of conventional radiation techniques, the hybrid radiation technique combining the Sommerfeld radiation condition with the damping technique was proposed. It is confirmed that the proposed method, the Hybrid radiation technique, improves the limitation of the speed range and the dissipation of the wave of the conventional radiation technique. The motion analysis code of the three dimensional floating structure with the forward speed based on the Rankine source method with hybrid radiation technique was developed. In order to validate the developed code, hydrodynamic analyses were carried and compared with published experiments.