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Abstract

This study investigated the feasibility of gait recognition using points on the body in three-
dimensional (3D) space based on comparisons of four different feature vectors. To obtain the
point trajectories on the body in 3D, gait motion data were captured from 10 participants using
a 3D motion capture system, and four shoes with different heel heights were used to study the
effects of heel height on gait recognition. Finally, the recognition rates were compared using
four methods and different heel heights.
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1. Introduction

Biometrics is a science that studies automated methods for identifying or verifying a person
based on their physiological or behavioral traits. Various features have been used for human
identification, such as the face, fingerprints, palmprint, handwriting, iris, gait, and voice. Gait
recognition is considered to be a non-coercive recognition method that is practical for use at a
distance.

Gait recognition is classified into two categories: model-based approaches and silhouette-
based approaches [1]. Model-based approaches focus on describing the static and dynamic
characteristics of human walking using model parameters [2]. Silhouette-based approaches
make intuitive interpretations based on the observed images. In particular, the gait energy
image (GEI) is used frequently in silhouette-based approaches.

GEI-based methods have advantages for individual identification because they include
simple spatiotemporal movement changes in an image [3]. However, these methods have
view-dependent limitations in two dimensions (2D), like other silhouette-based approaches [4].
Bouchrika et al. [5] demonstrated that view-dependency affects gait recognition significantly.
Two methods have been applied widely to overcome the limitations of view-dependency in 2D.

The first method trains the image data depending on various views. Methods were developed
by BenAbdelkader et al. [6] and Wang et al. [7]to identify a person using various images
from different views. The second method simply extracts the least view-sensitive features
from the gait. Han et al. [8] proposed a statistical method for identifying view-insensitive
features.These methods are useful in some restricted cases but it can be difficult to identify a
person in practice due to the low recognition rate.
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Alternatively, the features extracted from three-dimensional
(3D) data can be used to overcome the view-dependency prob-
lem. Sivapalan et al. [10] studied the gait energy volume (GEV),
which is an extended version of the GEI method that uses frontal
depth images. Tracking people using multiple cameras was
also studied by Zhao et al. [11], who found that individual
movements can be recognized clearly in 3D based on the joint
trajectories of the lower limbs and body information, such as
the height and leg length.

Distortion of appearance is another problem that affects
silhouette-based gait recognition. Lee et al. showed that the
elimination of appearance distortions, such as carrying a back-
pack or a handbag while walking, is necessary for gait recog-
nition because objects carried while walking lead to incorrect
silhouette images. Thus, principal component analysis (PCA)
was applied recursively to overcome the distorted appearance
problem [12]. Similarly, Pratheepan et al. proposed a method to
overcome the distorted appearance problem, which generated
dynamic and static feature templates of silhouette images based
on motion history images [9].

However, both of the problems mentioned above can be
overcome using 3D motion capture data that contain points on
body parts. The gait data obtained using points on the body in
3D are independent of the viewpoint. Furthermore, it is easy to
extract points on the body such as the head, leg, or arm even
when objects interrupt the body, unless the overall appearance
is obscured. Individual identification based on gait would be
useful in practice if a person could be identified using trajectory
information from the body points in 3D.

In this study, we investigated the feasibility of gait recogni-
tion based on points on the body in 3D and we also compared
four different methods to identify the most effective method for
gait recognition using body points. The first two methods used
feature vectors extracted from the gait voxel intensity, which
is conceptually similar to GEI. The other two methods used
feature vectors extracted by principal components analysis of
the trajectories of the body points and joint angles.

A 3D motion capture system was used to obtain gait data
from people in 3D space where 35 markers were attached to
the body and tracked to extract the point trajectories of the
body during walking. In addition, four shoes with different heel
heights were used to investigate the effects of shoe variability.
This was because Phillips et al. [13] found that the gait recog-
nition performance was degraded with different shoes types
and ground surfaces, because these external factors affected the
individual gait of a person. At present, this is not considered

Figure 1. Motion capture dataset: (a) a description of the marker set
and (b) an example showing the markers attached to a participant.

to be a critical problem during gait recognition, but it will be
important for practical applications.

Gait recognition with the four different shoe conditions was
performed using four feature vectors and the recognition rates
were compared to determine the characteristics of the feature
vectors and the effects of heel height. Finally, the cumula-
tive matching characteristics (CMC) curves were obtained to
illustrate the recognition results.

2. Data Collection and Preprocessing

2.1 Motion Capture Dataset

Gait data were collected using 3D motion analysis system (Vi-
con Motion Capture System Ltd., Oxford, UK) at Advanced
Institutes of Convergence Technology (AICT, Suwon, Korea).
Ten women participated in the experiment, whose average age,
height and weight were 21.0 ± 0.85 years, 159.68 ± 4.18 cm
and 50.10± 3.31 kg, respectively. Thirty-five reflective markers
(14 mm spheres) were attached on the body of the participants
based on Vicon Plug-in-Gait marker set (4 in the head, 15 in
the upper body, and 16 in the lower body). Three walking trials
of each participant were captured at 100 Hz by 12 cameras
which have a resolution of 16 megapixels (Vicon T160 Camera,
Vicon Motion Capture System Ltd.). All participants walked
at their preferred speed under the four different types of shoes
(flat shoes of 1.2 cm heel, medium heels of 4.7 cm heel, wedge
heels of 7.5 cm heel, and high heels of 9.8 cm heel).

This experiment was approved by the institutional review
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board of Seoul National University. Figure 1 shows a detailed
description of the marker set (Figure 1a) and an example of
attached markers on the body (Figure 1b).

2.2 Preprocessing

Kinematic data of walking were obtained from 10 participants
using Vicon Nexus software. Thirty-five marker point trajecto-
ries were extracted in x-axis (anterior direction), y-axis (lateral
direction), and z-axis (vertical direction), respectively. Fifty-
three joint angle trajectories were calculated from the marker
point trajectories by the software.

To define the starting frame of one gait cycle, we chose a key
frame at the instant of which the distance of two feet on the
ground are farthest away in x-axis as Collins et al. [14] choose.
Each walking cycle of all participants starts from the key frame
and ends before the next key frame.

3. Feature Modeling and Classification

3.1 Feature Vectors Using Gait Voxel Intensity

Gait voxel intensity is defined as the number of overlapped
voxels in total frames during a gait cycle divided by the number
of the total frames. This concept is similar to GEI, which uses
silhouette images of the whole body in 2D. However, we use
voxels of some points obtained from motion capture data in 3D.
The gait voxel intensity represents spatial-temporal information
just as GEI does, but it is not view-dependent.

The gait voxel intensity is calculated as follows in our ex-
periments. First, the marker data of a frame were positioned
into the 3D space of 1500 × 1500 × 2000 mm (length × width
× height) based on the center point of pelvis. The space is
then divided into 60 × 60 × 80 voxels, which size is 25 mm3.
A binary digit at each voxel in the mth frame is denoted as
Bm(i, j, k) where i, j, and k are the indices along x, y, and z
directions, respectively. The digit Bm(i, j, k) is 1 if a marker
is on the voxel and 0 otherwise. Then, it is counted how many
times markers are placed at a certain voxel in the 3D space
during N frames which is the total number of frames during a
gait cycle. The gait voxel intensity G(i, j, k) is calculated as
follows

G(i, j, k) =
1

N

N∑
m=1

Bm(i, j, k). (1)

In this paper, we obtain gait voxel intensity by two different
ways: using marker points and using lines between two points.

Figure 2. Gait voxel intensity in the 3-dimentional space: (a) using
the maker points and (b) using lines between the two points.

Gait voxel intensity using marker points is calculated from the
voxels of the 35 points which are the marker positions attached
on the participants during a gait cycle. Meanwhile, gait voxel
intensity using lines is obtained from the voxels of the 55 lines
which are the straight line connecting two points among 35
marker points. From these gait voxel intensity, feature vectors
Ĝ are extracted as follows,

Ĝ = [G(1, 1, 1), · · · , G(1, j, k), · · · , G(i, j, k)]T . (2)

Figure 2 shows an example of gait voxel intensity in the 3D
space: (a) using maker points and (b) using lines between two
points. A voxel with higher intensity means that the voxel is
overlapped more frequently in a cycle of walking. Thus, in the
figure, dark colored voxels indicate that the body parts have
little change of movement, for example the head part, while
bright colored voxels mean a wide change of movement, for
example the leg part.

3.2 Feature Vectors Using Principal Component Analysis

Principal component analysis (PCA) reduces the dimensionality
of data, while highlighting similarities and differences of pat-
terns in the data by choosing highest variance of the data [15].
Thus, it is often used to calculate feature vectors from GEI and
silhouette-based images.

However, in our experiments, PCA is directly applied to
trajectories of the body points or joint angles. This approach
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Table 1. Description of the joint angles

Description Total axes

Head Head rotation 3

Upper body Neck rotation 3

Thorax rotation 3

Spine rotation 3

Upper limb Shoulder rotation (left/right) 3

Elbow rotation (left/right) 1

Wrist rotation (left/right) 3

Lower limb Pelvis rotation 3

Hip rotation (left/right) 3

Knee rotation (left/right) 3

Ankle rotation (left/right) 3

Foot rotation (left/right) 3

is effective to reflect temporal kinematic information such as
a percentage of a cycle, and duration of swing or stance phase,
whereas GEI includes combined spatial-temporal information
of a whole cycle in an image.

Using PCA, the principal components aki are obtained by
minimizing Jd′ which is defined as

Jd′ =

n∑
k=1

∥∥(m+

d′∑
i=1

akiei
)
−Xk

∥∥2 (3)

where n is the number of dataset, d′ is the reduced dimension
with respect to the original dimension d of a feature template
Xk, and m is the mean of the feature templates Xk over the
n dataset. The error Jd′ is minimized when {e1, e2, . . . , ed′}
are chosen as the d′ eigenvectors of the scatter matrix S corre-
sponding to the largest d′ eigenvalues [16],

S =

n∑
k=1

(Xk −m)(Xk −m)T (4)

and the reduced dimension d′ is determined by

∑d′

i=1 σi∑d
i=1 σi

≥ h (5)

here σi is the ith eigenvalue of the scatter matrix S and h is a
threshold, which is set to 0.99 in our experiments.

By the PCA algorithm, we extract feature vectors for gait

recognition in two different ways: using trajectories of the body
points and using trajectories of joint angles. The feature vector
using PCA on the trajectories of the body points is calculated
from the 35 marker points which are the same points used in
gait voxel intensity with marker points. On the other hand, the
feature vector using PCA on the trajectories of the joint angles
is obtained from the 53 joint angles which are described in
Table 1.

To calculate feature vectors from those trajectories, the gait
data for 10 participants were normalized in the same number of
frames because people have different durations of a gait cycle
by different walking speeds. Therefore, range of the data was
interpolated by linear time normalization in 50 frames for a gait
cycle. In summary, a feature template Xk has a column vector
of 150 dimension {x1, x2, . . . , x150}, because the total number
of frames during a gait cycle is the 50 frames in x, y, and z-axis
(50 × 3) for one point.

Finally, feature vectors using PCA are extracted as follows,

yk = [ak1, ak2, · · · , akd′ ]T

=MpcaXk = [e1, · · · , ed′ ]TXk, k = 1, . . . , n.
(6)

where Mpca consists of the eigenvectors of d
′
. Thus, the dimen-

sion of the feature vector yk is determined by the dimension of
d

′
.

3.3 Classification

Once the feature vectors are extracted from four different meth-
ods: gait voxel intensity using points and lines and PCA using
points and joint angles, Euclidean distance is used for classifi-
cation. The similarity between training and validation data is
determined by the distance among feature vectors.

4. Experimental Result and Analysis

Four gait motion cycles were captured with four different shoe
heights from 10 people. Thus, we analyzed gait recognition
data from 160 cycles in total. Of these data, 80 cycles were
used as training data, which are referred to as gallery data. The
other 80 cycles were used as validation data, which are referred
to as probe data.

The gallery and probe data were used to compare the gait
recognition rates with the four different methods. CMC curves
were produced to illustrate the performance of the methods. The
effect of heel height was also analyzed based on the recognition
rates.
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4.1 Gait Recognition Using Four Different Feature Vec-
tors

First, gait recognition with various shoe conditions was ana-
lyzed using four different methods. Table 2 shows the recogni-
tion rates, where method1 and method2 are the gait recognition
results obtained based on the gait voxel intensity using marker
points and the lines between two points, respectively. Method3
and method4 are the gait recognition results obtained using
PCA based on the trajectories of the body points and the joint
angles, respectively.

The total average recognition rate was higher using method2
than method1. This indicates that the gait voxel intensity was
more effective when using lines to identify a person compared
with the gait voxel intensity determined using points because
the lines connecting two points could include more information
related to the walking motion.

Method3 had a higher recognition rate than method1, al-
though both methods used the same gait information, which was
obtained from 35 marker points. This was probably because the
gait voxel intensity only considered overlapping voxels and not
the exact positions of the marker points in the voxels throughout
the gait cycles. Therefore, for gait recognition based on points,
the recommended method is the one that used the feature vec-
tors extracted by the PCA, rather than the method based on the
gait voxel intensity.

Gait recognition based on PCA of the trajectories of the joint
angles was less effective than that based on the trajectories of
the body points. Table 2 shows that the average recognition rate
with method4 was lower than that with method3, and even lower
than that with method2. This may be because the trajectories of
the joint angles are affected more by different heel heights than
those of the body points.

4.2 Cumulative Matching Characteristics (CMC)
Analysis

Cumulative Matching Characteristics (CMC) curves were gen-
erated to illustrate the recognition results using the four different
methods. First, a CMC curve was computed by averaging the
CMC curves using each separate type of shoe for all subjects as
the gallery data. Each type of shoe was used as the gallery data
and the four types of shoes were used as probe data separately.
The CMC curve is shown in Figure 3a. In the CMC plot, the
horizontal axis represents the rank while the vertical axis is the
probability of a correct match. All four methods had recogni-
tion rates over 90% at rank 4. The most effective approach for

Table 2. Recognition rates using the four methods

Gallery Probe Method (%)

1 2 3 4

Flat
shoes

Flat 100 100 100 100

Medium 80 80 95 50

Wedge 60 75 85 55

High 60 75 80 45

Flat 75 85 90 90

Medium 100 100 100 100

Wedge 60 70 85 100

Medium
shoes

High 75 80 90 100

Wedge
heels

Flat 70 80 100 60

Medium 70 70 90 100

Wedge 100 100 100 100

High 90 90 100 95

Flat 65 65 75 40

Medium 70 85 95 90

Wedge 90 90 95 85

High
heels

High 100 100 100 100

Total average 79.06 84.06 92.50 81.88

identifying a person was method3, which applied PCA to the
trajectories of the body points. Method2, which used the gait
voxel intensity based on connecting lines, was more effective
than method1, which used the gait voxel intensity based on
points.

A second CMC curve was generated to consider more prac-
tical cases where the gallery was not constructed using only
one type of shoe, i.e., people wore flat shoes, medium height
shoes, wedges, or high heels in the gallery data. This CMC
curve shown in Figure 3b was computed by averaging the CMC
curves using randomly selected type of shoes for each person
as the gallery data. The probe data were also selected randomly
for each gallery data item. A discrete uniform distribution was
used to select the gallery and probe data. Twenty-thousand tests
were conducted to determine the average.

The plot shown in Figure 3b has the same trend as the plot in
Figure 3a, except for method4. This is because the trajectories
of the joint angles were dependent on the shoe height.
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Figure 3. Cumulative matching characteristics (CMC) curves using
the four different methods: (a) using one type of shoes for the gallery
data, and (b) using randomly selected shoe types for the gallery data.

4.3 Effects of Shoe Types with Different Heel Heights

In this study, we used four different shoes to simulate practical
gait recognition problems. Cowley et al. [17] showed that the
heel height affects the gait style and posture, which may prevent
accurate individual identification. This was confirmed by the
results shown in Table 2.

To investigate the effects of heel height on gait recognition
from a different viewpoint, the recognition rates in Table 2 were
rearranged based on the difference between the heel heights in
the gallery and probe data. The experimental shoes are listed by
the heel height in ascending order: flat shoes (1.2 cm), medium
heels (4.7 cm), wedge heels (7.5 cm), and high heels (9.8 cm).

Table 3. Recognition rate with different classifications

Heel height classification (%)

(1) (2) (3) (4)

Method1 100 80.00 68.75 67.50

Method2 100 82.50 78.75 75.00

Method3 100 93.75 90.00 86.25

Method4 100 82.50 83.75 61.25

Total average 100 84.69 80.31 72.50

(1) The same heel heights, (2) slightly different heel heights, (3)
moderately different heel heights, and (4) totally different heel heights.

Next, the differences between the heel heights in the gallery
and probe data were classified as follows for gallery-probe
pairs: (1) the same heel height, e.g., flat shoes-flat shoes; (2)
slightly different heel heights, e.g., flat shoes-medium heels; (3)
moderately different heel heights, e.g., flat shoes-wedge heels;
and (4) totally different heel heights, e.g., flat shoes-high heels.

The recognition rates for the four classifications are shown
in Table 3. The overall average recognition rates are shown
in Figure 4. The bar graph in Figure 4 demonstrates that the
overall average recognition rate declined as the difference in
the heel heights between the two shoes increased. This showed
that the recognition of the gait of a specific subject could be
incorrect, depending on the shoe conditions. However, method3
had the highest recognition rate of the four methods shown in
Table 3.

If these gait recognition approaches are applied in practice,
the feature vectors should be obtained from the gallery data be-
fore gait recognition. However, it can take a significant amount
of time to process the gallery data to obtain feature vectors.
By contrast, the processing time required to extract the feature
vectors from the probe data and to perform classification is
insignificant. For example, the four methods compared in the
present study required less than one second using Matlab as the
environment on a PC with an Intel processor (3.4 GHz clock
frequency) and 4 GB of RAM.

5. Conclusion

In this paper, we proposed four feature vectors for gait recog-
nition based on points on the body in 3D space and we investi-
gated their feasibility by experiments using a 3D motion capture
dataset.
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Figure 4. Average recognition rate depending on the difference in
the heel heights: (1) the same heel heights, (2) slightly different heel
heights, (3) moderately different heel heights, and (4) totally different
heel heights.

We compared four different feature vectors using the gait
voxel intensity and PCA to determine the most effective method
of gait recognition using point information. We found that the
analysis of the feature vectors using PCA based on the trajectory
of the body points was the most suitable method for identifying
a person.

In addition, we studied the effects of heel height on gait
recognition using four different shoe types. This study showed
that different heel heights affected the gait styles of subjects,
which led to incorrect gait recognition.

Based on these results, we plan to investigate the feasibility
of gait recognition using points on the body in a 2D partial view.
Furthermore, our future work will determine how many points
are required to identify a person and the specific body parts
where they should be positioned.
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