• Title/Summary/Keyword: three-dimensional model

Search Result 4,650, Processing Time 0.036 seconds

Numerical analysis of a three-dimensional turbulent wall-jet flow (3차원 난류 벽면제트 유동의 수치해석)

  • Ryu, S.Y.;Choi, D.H.;Kim, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.479-484
    • /
    • 2000
  • A Navier-stokes based finite volume method has been developed to analyze an incompressible, steady state, turbulent wall-jet flow. The standard k-e model, the RNG ${\kappa}-{\varepsilon}$ model and their nonlinear counterparts are adopted as a closure relationship. Comparison with the experimental data shows that a linear ${\kappa}-{\varepsilon}$ model performs satisfatorily for two-dimensional wall-jet flows. However, as the flow becomes three dimensional, the linear model fails to predict the spanwise jet growth accurately and the nonlinear model needs to be adopted to capture three-dimensional flow characteristics.

  • PDF

Learning-possibility for neuron model in Medical Superior Temporal area

  • Sekiya, Yasuhiro;Zhu, Hanxi;Aoyama, Tomoo;Tang, Zheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.516-516
    • /
    • 2000
  • We propose a neuron model that is possible to learn three-dimensional movement. The neuron model by imitating structure of a neuron, has the system resemble a neuron. We considered a neuron system based on the arguments, and wished to examine whether the system had reasonable function. Koch, Poggio and Torre believed that inhibition signal would shunt excitation signal on the dendrites. They believed that excitation signal operated input-signals and inhibition did as delayed ones. Thus, they were sure that function for directional selectivity was arisen by the shunting. Koch's concept is so important; therefore, we construct the neuron system with their concept. The neuron system makes the shunting function; thus, the model may have a function for directional selectivity. We initialized the connections and the dendrites by random data, and trained them by the back-propagation algorithm for three-dimensional movement. We made sure the defection of three-dimensional movement in the system.

  • PDF

An improved model of compaction grouting considering three-dimensional shearing failure and its engineering application

  • Li, Liang;Xiang, Zhou-Chen;Zou, Jin-Feng;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.217-227
    • /
    • 2019
  • This study focuses on an improved prediction model to determine the limiting grouting pressure of compaction grouting considering the ground surface upheaval, which is caused by the three-dimensional conical shearing failure. The 2D-dimensional failure curve in Zou and Xia (2016) was improved to a three-dimensional conical shearing failure for compaction grouting through coordinate rotation. The process of compaction grouting was considered as the cavity expansion in infinite Mohr-Coulomb (M-C) soil mass. The prediction model of limiting grouting pressure of compaction grouting was proposed with limit equilibrium principle, which was validated by comparing the results in El-Kelesh et al. (2001) and numerical method. Furthermore, using the proposed prediction model, the vertical and horizontal grouting tube techniques were adopted to deal with the subgrade settlement in Shao-huai highway at Hunan Provence of China. The engineering applicability and effectiveness of the proposed model were verified by the field test. The research on the prediction model for the limiting grouting pressure of compaction grouting provides practical example to the rapid treatment technology of subgrade settlement.

Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces (자유 곡면으로 구성되는 3차원 구조물에 대한 자동 요소 분할)

  • ;Yagawa, Genki
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • This paper describes an automatic finite element(FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid and shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid and shell structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Classification and Statement of Evaluating Objectives Using Three-Dimensional Assessment Framework of Science Inquiry (과학 탐구의 3차원 평가틀에 의한 평가 목표 분류 및 진술)

  • Woo, Jong-Ok;Cheong, Cheol
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.3
    • /
    • pp.270-277
    • /
    • 1996
  • The purpose of this study is to classify and state of evaluating objectives using three-dimensional assessment framework of science inquiry. The first, as an attempt to provide a theoretical base for developing an assessment framework taxonomies and classificatory schemes of educational objectives were analyzed Bloom's taxonomy, Klopfer's specification, NAEP(National Assessment of Educational Progress), and APU(Assessment of Performance Unit) framework. The second, three-dimensional assessment framework use in this study has formed a clear definition of three-dimensional matrix. These three dimensions consists of content, context and process. The third, the model of three-dimensional taxonomy of science inquiry developed in this study is presented. In addition, an example of classification and statement of evaluating objectives based on the model is presented.

  • PDF

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong;Kim Nam-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.343-348
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Analysis of Two Dimensional and Three Dimensional Supersonic Turbulence Flow around Tandem Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Lee Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1256-1265
    • /
    • 2006
  • The supersonic flows around tandem cavities were investigated by two-dimensional and three-dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes (RANS) equation with the k- ω turbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split with van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge- Kutta method. The aspect ratios of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two- dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the first cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

Three-dimensional groundwater water flow in an upland area-groundwater flow analysis by steady state three-dimensional model (홍적지대에 있어서의 지하수의 3차원적 유동-3차원 정상류모델에 의한 지하수 유동해석)

  • 배상근
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.113-122
    • /
    • 1987
  • A numerical simulation technique of three-dimensional finite difference model is developed to study the groundwater flow system in Dcjima, an upland area which faces Kasumigaura Lake. For general perspectives of the groundwater flow system, a steady state three-dimentional model is simulated. For the sedimentary mud formations which are found in the representative formation, three situations of hydraulic conductivity are considered, representing an isotropic condition and situations where the horizontal permeability is equal to 10 times and 100times of the vertical one. The finite difference grid used in the simulation has 60x50x30=90,000 nodes. A converged solution with a tolerance of 0.001 meter of hydraulic head is set. Having determined the flow net by using a steady state three-dimensional model. the results for the three cases of hydraulic conductivity are compared with the results of tracer methods (Bae and Kayane 1987) With the aid of four representative vertical cross-sections, groundwater flow systems in the study area are assumed. Water balances for the three cases indicate very good agreement between total recharge and discharge in each case Analyses of groundwater flow system based on the tritium concentrations and water quality measurements (Bae and Kayane 1987) are confirmed by the numerical simulation and the results obtained by these two methods appeared to be in close agreement.

  • PDF

Children's Education Application Design Using AR Technology (AR기술을 활용한 어린이 교육 어플리케이션 디자인)

  • Chung, HaeKyung;Ko, JangHyok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.23-28
    • /
    • 2021
  • Augmented reality is a technique for combining virtual images into real life by showing information of virtual 3D objects on top of a real-world environment (Azuma et al., 2001). This study is an augmented reality-based educational content delivery device that receives user input that selects either a preset object or a photographed object for augmented reality-based training; It includes a three-dimensional design generation unit that generates a stereoscopic model of the augmented reality environment from an object, a three-dimensional view of the scene, a disassembly process of the developing road from a three-dimensional model, and a content control unit provided by the user terminal by generating educational content including a three-dimensional model, a scene chart, a scene, a decomposition process, and a coupling process to build a coupling process from the scene to the three-dimensional model in an augmented reality environment. The next study provides a variety of educational content so that children can use AR technology as well as shapes to improve learning effectiveness. We also believe that studies are needed to quantitatively measure the efficacy of which educational content is more effective when utilizing AR technology.

Structural Analysis of Tunnel Structures by Two and Three Dimensional Modeling (2차원 및 3차원 모델링에 의한 터널구조물의 구조해석)

  • Kim, Rae-Hyun;Chung, Jae-Hoon;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.97-102
    • /
    • 2002
  • Two dimensional Analysis has been applied to most of tunnel lining design in these days. Two dimensional analysis uses beam or curved beam element for finite element method. But because the behaviors of tunnel concrete lining structure is near to shell, it is required to model the tunnel lining as shell structure for safety design of tunnel lining structure. In this paper, two dimensional analysis by beam element and the three dimensional analysis by shell element of tunnel concrete lining are studied, in which 3 type of tunnel lining and lateral pressure factors are considered. As results of the study, three dimensional analyses of the behavior of tunnel concrete lining structure considering lateral pressure factor shows that the moment of three dimensional analysis is greater than those of two dimensional analysis. The results shows that three dimensional analysis is necessary for safety design of tunnel lining.