• 제목/요약/키워드: three-dimensional flow

검색결과 2,497건 처리시간 0.023초

3차원 유동장 측정용 홀로그래피 간섭토모그래피 (Holographic interferometric tomography for reconstructing a three- dimensional flow field)

  • 차동진
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.749-757
    • /
    • 1999
  • Holographic interferornetric tomography can provide reconstruction of instantaneous three dimensional gross flow fields. The technique however confronts ill-posed reconstruction problems in practical applications. Experimental data are usually limited in projection and angular scanning when a field is captured instantaneously or under the obstruction of test models and test section enclosures. An algorithm, based on a series expansion method, has been developed to improve the reconstruction under the ill-posed conditions. A three-dimensional natural convection flow around two interacting isothermal cubes is experimentally investigated. The flow can provide a challenging reconstruction problem and lend itself to accurate numerical solution for comparison. The refractive index fields at two horizontal sections of the thermal plume with and without an opaque object are reconstructed at a limited view angle of 80" The experimental reconstructions are then compared with those from numerical calculation and thermocouple thermometry. It confirms that the technique is applicable to reconstruction of reasonably complex, three-dimensional flow fields.elds.

  • PDF

복합 덕트시스템의 유량분배에 관한 1차원 해석의 적합성 (Adaptability of one-dimensional analysis for the flow distribution of a complex duct system)

  • 이승철;이재헌
    • 설비공학논문집
    • /
    • 제11권5호
    • /
    • pp.579-587
    • /
    • 1999
  • The flow distribution characteristics in a complex duct system have been investigated in this paper by three means, namely experimental measurement, numerical simulation and the Extended T-method analysis. While the exit flow rates predicted by the three-dimensional CFD calculation and those given by the experiment show a close agreement, the results from the one-dimensional Extended T-method are found to differ from the experiment by -22.2% to 26.3% for the various exits. These discrepancies may be attributed to the underlying limitation concerning the fitting loss coefficients, which assume that the flow in front of the fittings is fully developed. It is proposed that, in order to analyse the three-dimensional flow distributions in a complex duct system by one-dimensional analysis such as the Extended T-method, further Improvements to the fitting loss coefficients should be made.

  • PDF

화학적 기계 연마를 위한 탄성변형을 고려한 평균유동모델 (Average Flow Model with Elastic Deformation for CMP)

  • 김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • 제20권5호
    • /
    • pp.284-291
    • /
    • 2004
  • We present a three-dimensional average flow model considering elastic deformation of pad asperities for chemical mechanical planarization. To consider the contact deformation of pad asperities in the calculation of the flow factor, three-dimensional contact analysis of a semi-infinite solid based on the use of influence functions is conducted from computer generated three dimensional roughness data. The average Reynolds equation and the boundary condition of both force and momentum balance are used to investigate the effect of pad roughness and external pressure conditions on film thickness and wafer position angle.

Experimental Study on the Unsteady Flow Characteristics for the Counter-Rotating Axial Flow Fan

  • Cho, L.S.;Lee, S.W.;Cho, J.S.;Kang, J.S.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.790-798
    • /
    • 2008
  • Counter-rotating axial flow fan(CRF) consists of two counter-rotating rotors without stator blades. CRF shows the complex flow characteristics of the three-dimensional, viscous, and unsteady flow fields. For the understanding of the entire core flow in CRF, it is necessary to investigate the three-dimensional unsteady flow field between the rotors. This information is also essential to improve the aerodynamic characteristics and to reduce the aerodynamic noise level and vibration characteristics of the CRF. In this paper, experimental study on the three-dimensional unsteady flow of the CRF is performed at the design point(operating point). Flow fields in the CRF are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. The phase-locked averaged hot-wire technique utilizes the inclined hot-wire, which rotates successively with 120 degree increments about its own axis. Three-dimensional unsteady flow characteristics such as tip vortex, secondary flow and tip leakage flow in the CRF are shown in the form of the axial, radial and tangential velocity vector plot and velocity contour. The phase-locked averaged velocity profiles of the CRF are analyzed by means of the stationary unsteady measurement technique. At the mean radius of the front rotor inlet and the outlet, the phase-locked averaged velocity profiles show more the periodical flow characteristics than those of the hub region. At the tip region of the CRF, the axial velocity is decreased due to the boundary layer effect of the fan casing and the tip vortex flow. The radial and the tangential velocity profiles show the most unstable and unsteady flow characteristics compared with other position of rotors. But, the phase-locked averaged velocity profiles of the downstream of the rear rotor show the aperiodic flow pattern due to the mixture of the front rotor wake period and the rear rotor rotational period.

  • PDF

폭방향으로 분사되는 막냉각 제트의 3차원 유동특성 및 압력손실 (Three-dimensional flow and pressure loss of a film-cooling jets injected in spanwise direction)

  • 이상우;김용범
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1363-1375
    • /
    • 1996
  • Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate three-dimensional flow characteristics and total pressure losses of a row of film-cooling jets injected in spanwise direction. For several span-to-diameter ratios, experiments are performed in the case of three velocity ratios of 0.5, 1.0 and 1.5. The flow measurements show that downstream flow due to the injection is characterized by a single streamwise vortex instead of a pair of counter-rotating vortices, which appear in the case of streamwise injection, and the vortex strength strongly depends on the velocity ratio. Regardless of the velocity*y ratio, presence of the spanwise film-cooling jets always produces total pressure loss, which is pronounced when the velocity ratio is large. It has also been found that the production of the total pressure loss is closely related to the secondary vortical flow. In addition, effects of the span-to-diameter ratio on the flow and total pressure loss are discussed in detail.

Optical Flow와 Normalized Cut을 이용한 2차원 동영상의 3차원 동영상 변환 (Three-Dimensional Conversion of Two-Dimensional Movie Using Optical Flow and Normalized Cut)

  • 정재현;박길배;김주환;강진모;이병호
    • 한국광학회지
    • /
    • 제20권1호
    • /
    • pp.16-22
    • /
    • 2009
  • 본 논문에서는 2차원 동영상을 normalized cut과 optical flow를 이용하여 3차원 동영상으로 변환하는 방법을 제안하였다. 이를 통해 특정 디스플레이 장치와 특정 동영상 포맷에 국한되지 않는 2차원 동영상의 3차원 동영상 변환 방법을 제안하였다. 본 연구에서는 2차원 동영상의 3차원 변환을 위하여 먼저 영상을 객체로 분할하고, 분할된 객체의 깊이를 추정하는 방법을 사용하였다. Normalized cut은 영상분할의 한 방법으로, 본 연구에서는 연산속도 향상을 위하여 기존 방법에 watershed 알고리즘을 적용하였고, 정확도 향상을 위하여 가중치에 optical flow를 추가하였다. Normalized cut을 이용하여 분할된 영상의 깊이 정보를 추정하기 위하여 optical flow를 이용하였다. Optical flow의 차이를 통해 정의할 수 있는 가려진 영역의 분할 영상 변화를 통해 순서적 깊이 정보를 추정한다. 추정된 순서적 깊이를 보정하기 위해 optical flow의 절대적 크기를 이용해 운동시차로 상대적 깊이를 추정하였다. 최종적으로 추정된 깊이 정보는 순서적 깊이와 상대적 깊이의 곱을 평균 optical flow로 나누어, 순서적 깊이의 차이를 보정하였다. 제안한 방법의 검증을 위하여 2차원 동영상을 3차원 동영상으로 변환하여 깊이 정보가 추정됨을 확인하였다.

PIV를 이용한 분지관모델내 3차원 맥동유동의 가시화 (Three-Dimensional Flow Visualization of Pulsatile Flow in a Branching Model using the PIV System)

  • 성순경;조민태;노형운;서상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.748-753
    • /
    • 2001
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCO camera for the image processing at several cross section. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

3차원 단조해석용 후처리기 개발 (Development of a Post-Processor for Three-Dimensional Forging Analysis)

  • 정완진;최석우
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.542-549
    • /
    • 2003
  • Three-dimensional forging analysis becomes an inevitable tool to make design process more reliable and more producible. In this study, in order to make the investigation for three-dimensional forging analysis more conveniently and accurately, a new post processor was developed. For post-processing of multi-stage forging simulation, efficient data structure was proposed and applied by using STL. New file architecture was developed to handle successive and huge data efficiently, common in three-dimensional forging analysis. Since sectioning and flow tracing plays an important role in the investigation of analysis result, we developed an algorithm suitable for 4-node and 10-node tetrahedron. This flow tracing algorithm can trace and reverse-trace flow through remeshing. Developed program shows good performance and functionality. Especially, a big size problem can be handled easily due to proposed data structure and file architecture.

다층 예비성형체에 대한 삼차원 충진해석 (Three-Dimensional Mold Filling Simulation for Multi-layered Preform in Resin Transfer Molding)

  • 양매;송영석;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.137-140
    • /
    • 2005
  • Resin transfer molding (RTM) is one of the most popular processes for producing fiber reinforced polymer composites. In the manufacture of complex thick composite structures, analysis on flow front advancement on the resin impregnating the multi-layered fiber preform is helpful for the optimization of the process. In this study, three-dimensional mold filling simulation of RTM is carried out by using CVFEM (Control Volume Finite Element Method). On the assumption of isothermal flow of Newtonian fluid, Darcy’s law and continuity equation are used as governing equations. Different permeability tensors employed in each layer are obtained by experiments. Numerically predicted flow front is compared with experimental one in order to validate the numerical results. Flow simulations are conducted in the two mold geometries, rectangular plate and hollow cylinder. Permeability tensor of each layer preform in Cartesian coordinate system is transformed to cylinder coordinates system so that the flow within the multi-layered preforms of the hollow cylinder can be calculated exactly. Our emphasis is on the three dimensional flow analysis for circular three-dimensional braided preform, which shows outstanding mechanical properties such as high impact strength and toughness compared with other conventional two-dimensional laminar-structured preforms.

  • PDF

엇회전식 축류팬의 3 차원 비정상 유동에 관한 실험적 연구 (Experimental Study on the Three Dimensional Unsteady Flow in a Counter Rotating Axial Flow Fan)

  • 박현수;조이상;강현구;조진수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.822-827
    • /
    • 2003
  • Experiments were done for the three dimensional unsteady flow in a counter rotating axial flow fan under stable operating condition. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional flow patterns were investigated through the acquired data by the $45^{\circ}$ inclined hot-wire. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential velocity vector plot. Swirl velocity, which was generated by the front rotor, was recovered in the form of static pressure rise by the rear rotor except for hub and tip regions.

  • PDF