• Title/Summary/Keyword: three-dimensional dynamic analysis

Search Result 576, Processing Time 0.029 seconds

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

Sensitivity analysis to determine seismic retrofitting column location in reinforced concrete buildings

  • Seo, Hyunsu;Park, Kyoungsub;Kwon, Minho;Kim, Jinsup
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.77-86
    • /
    • 2021
  • Local school buildings are critical facilities that can provide shelter in disasters such as earthquakes, so they must be more resistant to seismic forces than other structures. In this study, a sensitivity analysis was conducted to determine which columns-as the most critical members in a reinforced concrete building-most urgently require seismic retrofitting. The sensitivity analysis was conducted using an optimization technique with the location of each column as a parameter. A numerical model was developed to simulate a realistic collapse mode through a three-dimensional dynamic analysis. Based on numerical analysis results, it was found that the columns positioned in the lower floors, such as the first floor and in the outer part of a building, urgently require retrofitting. For reinforcement of the RC columns, which has been proven for its performance in previous research, was applied. Through this study, the importance of appropriate retrofitting is demonstrated. Further, a method for determining the appropriate location for retrofitting-when retrofitting is not possible on the entire structure-is presented.

Seismic response of a monorail bridge incorporating train-bridge interaction

  • Kim, Chul-Woo;Kawatani, Mitsuo;Lee, Chang-Hun;Nishimura, Nobuo
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.111-126
    • /
    • 2007
  • Dynamic responses of the bridge for a straddle-type monorail subjected to the ground motion of high probability to occur are investigated by means of a three-dimensional traffic-induced vibration analysis to clarify the effect of a train's dynamic system on seismic responses of a monorail bridge. A 15DOFs model is assumed for a car in the monorail train. The validity of developed equations of motion for a monorail train-bridge interaction system is verified by comparison with the field-test data. The inertia effect due to a ground motion is combined with the monorail train-bridge interaction system to investigate the seismic response of the monorail bridge under a moving train. An interesting result is that the dynamic system of the train on monorail bridges can act as a damper during earthquakes. The observation of numerical results also points out that the damper effect due to the dynamic system of the monorail train tends to decrease with increasing speed of the train.

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

Finite Element Analyses on the Dynamic Behavior of Piezoelectric ZnO Nanowires and Their Piezoelectric Device Application Potentials (압전 산화아연 나노와이어의 동적거동 및 압전소자 응용성)

  • Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.

Design and Performance Analysis of Mixed-Flow Pump: for Waterjet Marine Propulsion (Waterjet 선박추진용 사류펌프의 설계 및 성능해석)

  • Hwang, Soon-Chan;Yoon, Eui-Soo;Oh, Hyoung-Woo;Choi, Bum-Seog;Park, Moo-Ryong;Ahn, Jong-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.47-53
    • /
    • 2002
  • The hydraulic design optimization and performance analysis of mixed-flow pumps for waterjet marine vehicle propulsion has been carried out using mean streamline analysis and three-dimensional computational fluid dynamics (CFD) code. In the present study the conceptual design optimization has been formulated with a non-linear objective function to minimize the fluid dynamic losses and then the commercial CFD code was incorporated to allow for detailed flow dynamic phenomena in the pump system. New designed mixed-flow model pump has been tested in the laboratory. Predicted performance curves by the CFD code agree very well with experimental data for a newly designed mixed-flow pump over the normal operating conditions. The design and prediction methods presented herein can be used efficiently as a unified hydraulic design process of mixed-flow pumps for waterjet marine vehicle propulsion.

  • PDF

Advances for the time-dependent Monte Carlo neutron transport analysis in McCARD

  • Sang Hoon Jang;Hyung Jin Shim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2712-2722
    • /
    • 2023
  • For an accurate and efficient time-dependent Monte Carlo (TDMC) neutron transport analysis, several advanced methods are newly developed and implemented in the Seoul National University Monte Carlo code, McCARD. For an efficient control of the neutron population, a dynamic weight window method is devised to adjust the weight bounds of the implicit capture in the time bin-by-bin TDMC simulations. A moving geometry module is developed to model a continuous insertion or withdrawal of a control rod. Especially, the history-based batch method for the TDMC calculations is developed to predict the unbiased variance of a bin-wise mean estimate. The developed methods are verified for three-dimensional problems in the C5G7-TD benchmark, showing good agreements with results from a deterministic neutron transport analysis code, nTRACER, within the statistical uncertainty bounds. In addition, the TDMC analysis capability implemented in McCARD is demonstrated to search the optimum detector positions for the pulsed-neutron-source experiments in the Kyoto University Critical Assembly and AGN201K.

Evaluation of Seismic Performance of Takahama Wharf Using Nonlinear Effective Stress Analysis (비선형 유효응력해석을 이용한 Takahama 잔교식 안벽의 내진성능 평가)

  • Tran, Nghiem Xuan;Lee, Jin-sun;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2017
  • Aseismic designs of pile-supported wharves are commonly performed utilizing simplified dynamic analyses, such as multi-mode spectral analyses. Simplified analyses can be useful for evaluating the limit state of structures. However, several pile-supported wharves, that have been damaged during past earthquakes, have shown that soil deformation and soil-pile dynamic interaction significantly affect the entire behavior of structures. Such behavior can be captured by performing nonlinear effective stress analyses, which can properly consider the dynamic interactions among the soil-pile-structure. The present study attempts to investigate the earthquake performance of a pile-supported wharf utilizing a three-dimensional numerical method. The damaged pile-supported wharf at the Kobe Port during the Hyogo-ken Nambu earthquake (1995) is selected to verify the applicability of the numerical modeling. Analysis results showed a suitable agreement with the observations on the damaged wharf, and the significant effect of excess pore pressure development and pile-soil dynamic interaction on the seismic performance of the wharf.

3D Dynamic Finite Element Analysis and Corresponding Vibration of Asphalt Track Considering Material Characteristics and Design Thickness of Asphalt Concrete Roadbed Under Moving Load (아스팔트 콘크리트 설계두께 및 재료특성을 반영한 아스팔트 콘크리트 궤도 3차원 이동하중 동적해석 및 진동특성)

  • Lee, SeongHyeok;Seo, HyunSu;Jung, WooYoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • The asphalt-concrete trackbed system has many advantages in terms of maintenance and economics. However, methods to investigate practical use corresponding to the development of the trackbed system must be developed. The primary objective of this study was to evaluate the dynamic performance of the asphalt system in accordance with both the elastic and viscoelastic material characteristics and design thickness of the asphalt trackbed. More specifically, in order to reduce the uncertainty error of the Finite Element(FE) model, a three-dimensional full scale FE model was developed and then the infinite foundation model was considered. Finally, to compare the condition of viscoelastic materials, performance evaluation of the asphalt-concrete trackbed system was used to deal with the dynamic amplification factors; numerical results using isotropic-elastic materials in the FE analysis are presented.

Dynamic Characteristics of Space Framed Structures by Using Nonlinear Transient Analysis (비선형 과도해석을 이용한 스페이스 프레임 구조물의 동적특성)

  • Son, Jin Hee;Kim, Joo-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.395-402
    • /
    • 2016
  • Space frame structures considering the components such as forms, layers, grids, etc. are possible to form a large space without interior columns. Here, steels having the yield strengths of 210 MPa to 450 MPa are generally used. The high strength steel (i.e., yield strength of 690 MPa) having suitable weldability, aseismicity and economics have been recently developed. In this paper, the high strength steel is applied to the space frame structures in order to analytically find out their transient responses considering the material and geometric nonlinearities. For various circular dome types of space frame structures, the modal analysis and nonlinear transient analysis are carried out using nonlinear three dimensional finite element analysis.