DOI QR코드

DOI QR Code

Advances for the time-dependent Monte Carlo neutron transport analysis in McCARD

  • Received : 2022.12.05
  • Accepted : 2023.04.06
  • Published : 2023.07.25

Abstract

For an accurate and efficient time-dependent Monte Carlo (TDMC) neutron transport analysis, several advanced methods are newly developed and implemented in the Seoul National University Monte Carlo code, McCARD. For an efficient control of the neutron population, a dynamic weight window method is devised to adjust the weight bounds of the implicit capture in the time bin-by-bin TDMC simulations. A moving geometry module is developed to model a continuous insertion or withdrawal of a control rod. Especially, the history-based batch method for the TDMC calculations is developed to predict the unbiased variance of a bin-wise mean estimate. The developed methods are verified for three-dimensional problems in the C5G7-TD benchmark, showing good agreements with results from a deterministic neutron transport analysis code, nTRACER, within the statistical uncertainty bounds. In addition, the TDMC analysis capability implemented in McCARD is demonstrated to search the optimum detector positions for the pulsed-neutron-source experiments in the Kyoto University Critical Assembly and AGN201K.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2022M2D2A1A02063865).

References

  1. E.L. Kaplan, Monte Carlo Methods for Equilibrium Solutions in Neutron Multiplication, UCRL-5275-T, Lawrence Livermore National Laboratory, 1958.
  2. T.E. Valentine, J.T. Mihalczo, MCNP-DSP: a neutron and gamma ray Monte Carlo calculation of source-driven noise-measured parameters, Ann. Nucl. Energy 23 (16) (1996) 1271.
  3. U. Wia˛cek, E. Krynicka, Decay of the pulsed thermal neutron flux in two-zone hydrogenous systems e Monte Carlo simulations using MCNP standard data libraries, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 243 (1) (2006) 92.
  4. S. Goluoglu, et al., Development of a time-dependent three-dimensional deterministic neutron transport method, Trans. Am. Nucl. Soc. 76 (1997) 219.
  5. M. Shayesteh, M. Shahriari, Calculation of time-dependent neutronic parameters using Monte Carlo method, Ann. Nucl. Energy 36 (7) (2009) 901-909. https://doi.org/10.1016/j.anucene.2009.03.010
  6. Y.G. Jo, B.H. Cho, N.Z. Cho, Nuclear reactor transient analysis by continuous-energy Monte Carlo calculation based on predictor-corrector quasi-static method, Nucl. Sci. Eng. 183 (2016) 229-246. https://doi.org/10.13182/NSE15-100
  7. B.L. Sjenitzer, J.E. Hoogenboom, Dynamic Monte Carlo method for nuclear reactor kinetics calculations, Nucl. Sci. Eng. 175 (2013) 94-107. https://doi.org/10.13182/NSE12-44
  8. N. Shaukat, M. Ryu, H.J. Shim, Dynamic Monte Carlo transient analysis for the organization for economic Co-operation and development nuclear energy agency(OECD/NEA) C5G7-TD benchmark, Nucl. Eng. Technol. 49 (2017) 920-927. https://doi.org/10.1016/j.net.2017.04.008
  9. M. Faucher, D. Mancusi, A. Zoia, New kinetic simulation capabilities for TRIPOLI-4®: methods and applications, Ann. Nucl. Energy 120 (2018) 74-88. https://doi.org/10.1016/j.anucene.2018.05.030
  10. V. Valtavirta, M. Hessan, J. Leppanen, Delayed neutron emission model for time dependent simulations with the serpent 2 Monte Carlo Code first results, Proc. PHYSOR (2016) 1-5.
  11. C. Jia, et al., Development of an improved direct kinetic simulation capability in RMC code, Ann. Nucl. Energy 173 (2022), 109110.
  12. H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, C.H. Kim, McCARD: Monte Carlo code for advanced reactor design and analysis, Nucl. Eng. Technol. 44 (2) (2012) 161-176. https://doi.org/10.5516/NET.01.2012.503
  13. H.J. Shim, S.H. Choi, C.H. Kim, Real variance estimation by grouping histories in Monte Carlo eigenvalue calculations, Nucl. Sci. Eng. 176 (1) (2014) 58-68. https://doi.org/10.13182/NSE12-87
  14. V.F. Boyarinov, et al., Deterministic Time-dependent Neutron Transport Benchmark without Spatial Homogenization (C5G7-TD), NEA/NSC/DOC(2016), OECD Nuclear Energy Agency, 2018, Version 1.9.
  15. C.H. Pyeon, Experimental Benchmarks of Neutronics on Solid Pb-Bi in Accelerator-Driven System with 100 MeV Protons at Kyoto University Critical Assembly, KURRI-TR-447, Research Reactor Institute, Kyoto University, 2017.
  16. M.H. Kim, Research & Educational Reactor AGN-201K, Reactor Research & Education Center, Kyung Hee University, 2018.
  17. T.E. Booth, A Weight (Charge) Conserving Importance-Weighted Comb for Monte Carlo," LA-UR-96-0051, Los Alamos National Laboratory, NM (United States), 1996.
  18. Y. Cao, Y. Gohar, Monte Carlo simulations of periodic pulsed reactor with moving geometry parts, Ann. Nucl. Energy 85 (2015) 236-244. https://doi.org/10.1016/j.anucene.2015.05.020
  19. A. Talamo, et al., Serpent transient analyses of GIACINT geometrical change experiments, Ann. Nucl. Energy 164 (2021), 108601.
  20. Y.S. Jung, et al., Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers, Ann. Nucl. Energy 62 (2013) 357-374. https://doi.org/10.1016/j.anucene.2013.06.031
  21. S.H. Jang, H.J. Shim, Determination of an Effective Detector Position for Pulsed-Neutron-Source Alpha Measurement by Time-dependent Monte Carlo Neutron Transport Simulations, 2018, Science and Technology of Nuclear Installations, 2018.
  22. H.J. Shim, S.H. Jang, S.M. Kang, Monte Carlo Alpha Iteration Algorithm for a Subcritical System Analysis, 2015, Science and Technology of Nuclear Installations, 2015, pp. 1-7. https://doi.org/10.1155/2015/859242