• Title/Summary/Keyword: three-dimensional characterization

Search Result 141, Processing Time 0.023 seconds

Characterization of Binding Mode for Human Coagulation Factor XI (FXI) Inhibitors

  • Cho, Jae Eun;Kim, Jun Tae;Jung, Seo Hee;Kang, Nam Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1212-1220
    • /
    • 2013
  • The human coagulation factor XI (FXI) is a serine protease that plays a significant role in blocking of the blood coagulation cascade as an attractive antithrombotic target. Selective inhibition of FXIa (an activated form of factor XI) disrupts the intrinsic coagulation pathway without affecting the extrinsic pathway or other coagulation factors such as FXa, FIIa, FVIIa. Furthermore, targeting the FXIa might significantly reduce the bleeding side effects and improve the safety index. This paper reports on a docking-based three dimensional quantitative structure activity relationship (3D-QSAR) study of the potent FXIa inhibitors, the chloro-phenyl tetrazole scaffold series, using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods. Due to the characterization of FXIa binding site, we classified the alignment of the known FXIa inhibitors into two groups according to the docked pose: S1-S2-S4 and S1-S1'-S2'. Consequently, highly predictive 3D-QSAR models of our result will provide insight for designing new potent FXIa inhibitors.

An Evaluation Method for Three-Dimensional Morphologies of Discontinuities considering the Shear Direction

  • Zhang, Qingzhao;Luo, Zejun;Pan, Qing;Shi, Zhenming;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.85-99
    • /
    • 2022
  • Rock discontinuities, as weak interfaces in rock, control mechanical properties of rock mass. Presence of discontinuities complicates the engineering properties of rock, which is the root of anisotropy and heterogeneity that have nonnegligible influences on the rock engineering. Morphological characteristics of discontinuities in natural rock are an important factor influencing the mechanical properties, particularly roughness, of discontinuities. Therefore, the accurate measurement and characterization of morphologies of discontinuities are preconditions for studying mechanical properties of discontinuities. Taking discontinuities in red sandstone as research objects, the research obtained three-dimensional (3D) morphologies of discontinuities in natural rock by carrying out 3D morphological scanning tests. The waviness and roughness were separated from 3D morphologies of rock discontinuities through wavelet transform. In addition, the calculation method for the overall slope root mean square (RMS) as well as slope RMSs of waviness and roughness of 3D morphologies of discontinuities considering the shear direction was proposed. The research finally determined an evaluation method for 3D morphologies of discontinuities by quantitatively characterizing 3D morphologies with the mean value of the three slope RMSs.

Characterization of Luster Properties of Nylon 6 Hollow Filament Yarn Woven Fabric - Three-dimensional Simulation of Hollow Filament -

  • Kim, Jong-Jun;Jeon, Dong-Won;Jeon, Jee-Hae
    • Journal of Fashion Business
    • /
    • v.8 no.6
    • /
    • pp.68-77
    • /
    • 2004
  • Hollow filament yarns provide better warmth to the touch, lighter in weight, increased opacity, and subtle luster compared to the regular synthetic filament yarns. However, luster properties of textile fibers or fabrics are often difficult to characterize, partly due to the fineness of the surface texture, the anisotropic nature of the weave structure, the complexity of the fiber array comprising a yarn, and the fiber structure itself. In this study, the fabric surface luster image was analyzed using image analysis methods after image acquisition. The hollow filament fiber was modeled using a three-dimensional modeling software. It was then ray-traced for comparing the virtual luster images of the hollow fiber and the regular fiber models based on shading models including photon mapping. The luster object size of the actual hollow filament fabric was smaller than that of the regular filament fabric. The shape of the luster object of the hollow filament fabric was dual peak type while that of the regular filament was single.

A Study on the Dynamic Expression of Fabrics based on RGB-D Sensor and 3D Virtual Clothing CAD System (RGB-D 센서 및 3D Virtual Clothing CAD활용에 의한 패션소재의 동적표현 시스템에 대한 연구)

  • Lee, Jieun;Kim, Soulkey;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.17 no.1
    • /
    • pp.30-41
    • /
    • 2013
  • Augmented reality techniques have been increasingly employed in the textile and fashion industry as well as computer graphics sectors. Three-dimensional virtual clothing CAD systems have also been widely used in the textile industries and academic institutes. Motion tracking techniques are grafted together in the 3D and augmented reality techniques in order to develop the virtual three-dimensional clothing and fitting systems in the fashion and textile industry sectors. In this study, three-dimensional virtual clothing sample has been prepared using a 3D virtual clothing CAD along with a 3D scanning and reconstruction system. Motion of the user has been captured through an RGB-D sensor system, and the virtual clothing fitted on the user's body is allowed to move along with the captured motion flow of the user. Acutal fabric specimens are selected for the material characterization. This study is a primary step toward building a comprehensive system for the user to experience interactively virtual clothing under real environment.

Direct Observation of Heterogeneous Nucleation in Al-Si-Cu-Mg Alloy Using Transmission Electron Microscopy and Three-dimensional Atom Probe Tomography

  • Hwang, Jun Yeon;Banerjee, Rajarshi;Diercks, David R.;Kaufman, Michael J.
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.122-126
    • /
    • 2013
  • The heterogeneous nucleation of the ${\Theta}^{\prime}$ phase on nanoscale precipitates has been investigated using a combination of three-dimensional atom probe tomography and high-resolution transmission electron microscopy. Two types of ${\Theta}^{\prime}$ phases were observed, namely small (~2 nm thick) cylindrical precipitates and larger (~100 nm) globular precipitates and both appear to be heterogeneously nucleated on the nanoscale precipitates. The composition and crystal structure of precipitates were directly analyzed by combination of two advanced characterization techniques.

Development of Three-dimensional Chamber-type Glucose Sensor Using Micromachining Technology (마이크로머시닝 기술을 이용한 3차원 마이크로 챔버형 글루코스 센서의 개발)

  • Kim Sung Ho;Kim Chang Kyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.24-28
    • /
    • 2005
  • A micromachined biochip with a three dimensional silicon chamber was developed for the construction of biosensors. Anisotropic etching was used fur the formation of the chamber on the p-type silicon wafer(100) and then was glued to the Pyrex glass bottom-substrate with pre-deposited platinum electrode. The electrochemical characterization of its Pt electrode and Ag/AgCl reference electrode was investigated.

  • PDF

Synthesis of Three-Dimensional Graphene Using Porous Nickel Nanostructure (다공성 니켈 나노 구조체를 이용한 3차원 그래핀의 합성)

  • Song, Wooseok;Myung, Sung;Lee, Sun Sook;Lim, Jongsun;An, Ki-Seok
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • Graphene has been a valuable candidate for use as electrodes for supercapacitors. In order to improve the surface area of graphene, three-dimensional graphene was synthesized on porous Ni nanostructure using thermal chemical vapor deposition and microwave plasma chemical vapor deposition. The structural and chemical characterization of synthesized graphene was performed by scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was confirmed that three-dimensional and high-crystalline multilayer graphene onto various substrates was synthesized successfully.

Image-based characterization of internal erosion around pipe in earth dam

  • Dong-Ju Kim;Samuel OIamide Aregbesola;Jong-Sub Lee;Hunhee Cho;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.481-496
    • /
    • 2024
  • Internal erosion around pipes can lead to the failure of earth dams through various mechanisms. This study investigates the displacement patterns in earth dam models under three different failure modes due to internal erosion, using digital image correlation (DIC) methods. Three failure modes—erosion along a pipe (FM1), pipe leakage leading to soil erosion (FM2), and erosion in a pipe due to defects (FM3)—are analyzed using two- and three-dimensional image- processing techniques. The internal displacement of the cross-sectional area and the surface displacement of the downstream slope in the dam models are monitored using an image acquisition system. Physical model tests reveal that FM1 exhibits significant displacement on the upper surface of the downstream slope, FM2 shows focused displacement around the pipe defect, and FM3 demonstrates increased displacement on the upstream slope. The variations in internal and surface displacements with time depend on the segmented area and failure mode. Analyzing the relationships between internal and surface displacements using Pearson correlation coefficients reveals various displacement patterns for the segmented areas and failure modes. Therefore, the image-based characterization methods presented in this study may be useful for analyzing the displacement distribution and behavior of earth dams around pipes, and further, for understanding and predicting their failure mechanisms.

Characterization and Generation of Machined Surfaces

  • Uchidate, M.;Shimizu, T.;Iwabuchi, A.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.259-260
    • /
    • 2002
  • In this paper, electrical discharge machined (EDM) surfaces machined with various machining parameters are characterized and simulated. Three-dimensional surface topography of EDM surfaces are measured by a stylus instrument. Surface topography is characterized with auto-correlation coefficient and height probability density functions. Then, EDM surfaces are modeled and computer-simulated by using the non-causal 2-D auto-regressive model. Simulation results show that EDM surfaces are characterized well by a few parameters.

  • PDF