• 제목/요약/키워드: three-dimensional FEM analysis

검색결과 301건 처리시간 0.023초

Coupled Analysis of Continuous Casting by FEM (유한요소법을 이용한 연속주조공정의 연계해석)

  • Moon C. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.181-185
    • /
    • 2001
  • Three-dimensional finite-element-based numerical model of turbulent flow, heat transfer, macroscopic solidification and inclusion trajectory in a continuos steel slab caster was developed Turbulence was incorporated using the Improved Low-Re turbulence model with positive preserving approach. The mushy region was modeled as the porous media with average effective viscosity. A series of simulations was carried out to investigate the effects of the casting speed, the slab size, the delivered superheat the immersion depth of the SEN on the transport phenomena. In the absence of any known experimental data related to velocity profiles, the numerical predictions of the solidified profile on a caster was compared with breakouts data and a good agreement was found.

  • PDF

Analysis of Hydroforming Process for Automobile Subframe by FEM (유한요소법을 이용한 자동차 Subframe의 하이드로포밍 공정 해석)

  • Chang Y. C.;Lei L. P.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.149-152
    • /
    • 2000
  • By using a three-dimensional finite element program HydroFORM-3D based on a rigid-plastic model, the hydroforming process for automobile subfrmae is analyzed in this study. The goal of this study is to accomplish preform design and determine the level of internal pressure for producing final hydroformed subframe component. Prior to hydroforming, the initial tube blank must be bent to the approximate centerline of the final part to enable the tube to be placed in the die cavity, After then, a preforming operation like stamping is carried out to the prebent tube. Finally, hydroforming process is performed to the preformed tube to get the final production. And through ductile fracture theory, the failure, bursting, is predicted during hydroforming process for tube blank with different diameter.

  • PDF

Initial Blank Design Considering Springback Reduction (스프링백 저감을 고려한 초기블랭크 설계)

  • 양우열;이승열;금영탁
    • Transactions of Materials Processing
    • /
    • 제12권3호
    • /
    • pp.208-213
    • /
    • 2003
  • The methodology to design initial blanks considering the reduction of both springback and flange trimming amounts is studied. Three dimensional forming analysis of a trial blank Is first carried out using FEM and the tentative Initial blank shape is then determined by cutting the outer edge of the trial blank whose shape is nearly matched with the trimming line. During the shaping the blank edge, tile movement of blank outer line is described with random variables to reduce the sensitivity of initial blank geometry. After performing 2-D FEM forming and springback simulations for selected sections and optimizing the trimming and springback amounts in terms of section length of the blank, the initial blank is finally determined. In order to see tile springback reduction in the initial blank determined by the proposed method, a stepped s-rail is stamped and the sppingback is measured. The springback of newly designed initial blank of stopped s-tail is tremendously reduced.

The study of stress distribution of cold rolled Steel sheets in tension leveling process (냉연 형상 교정시 Stress 천이 현상 연구)

  • Choi H.T.;Hwang S.M.;Koo J.M.;Park K.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.74-79
    • /
    • 2004
  • The shape of cold rolled steel sheets is the degree of flatness, and the flatter, the better. Because undesirable strip shapes of cold rolled steel sheets can affect not only visible problem but also automatic working process in customer's lines, the requirement of the customers is more and more stringent. So we usually used the tension leveler to make high quality of strip flatness. For the improvement of the quality of strip flatness, this report developed three-dimensional FEM (Finite Element Method) simulation model, and analysis about the strain and stress distribution of strip in the tension leveling process.

  • PDF

Construction and Characteristics of Single Phase Switched Reluctance Motor

  • Oh, Young-Woong;Lee, Eun-Woong;Lee, Jong-Han;Kim, Jun-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권1호
    • /
    • pp.6-11
    • /
    • 2004
  • The single phase switched reluctance motor (SRM) has many merits; simple structure and driving circuits, easy operation and speed control, and etc. This paper presents the torque characteristics of disk type single phase SRM by changing the salient pole lengths and pole arcs. The prototype single phase SRM has a three dimensional magnetic flux pattern because of its structure. That is, the radial and axial magnetic flux contributes to torque generation. Thus, 3D analysis is required for computation of its magnetic field. In this paper, 3D FEM is used for analyzing the magnetic flux distribution and magnetic co-energy.

Classification and visualization of primary trabecular bone in lumbar vertebrae

  • Basaruddin, Khairul Salleh;Omori, Junya;Takano, Naoki;Nakano, Takayoshi
    • Advances in biomechanics and applications
    • /
    • 제1권2호
    • /
    • pp.111-126
    • /
    • 2014
  • The microarchitecture of trabecular bone plays a significant role in mechanical strength due to its load-bearing capability. However, the complexity of trabecular microarchitecture hinders the evaluation of its morphological characteristics. We therefore propose a new classification method based on static multiscale theory and dynamic finite element method (FEM) analysis to visualize a three-dimensional (3D) trabecular network for investigating the influence of trabecular microarchitecture on load-bearing capability. This method is applied to human vertebral trabecular bone images obtained by micro-computed tomography (micro-CT) through which primary trabecular bone is successfully visualized and extracted from a highly complicated microarchitecture. The morphological features were then analyzed by viewing the percolation of load pathways in the primary trabecular bone by using the stress wave propagation method analyzed under impact loading. We demonstrate that the present method is effective for describing the morphology of trabecular bone and has the potential for morphometric measurement applications.

Various Structural Approaches to Analyze an Aircraft with High Aspect Ratio Wings

  • El Arras, Anas;Chung, Chan Hoon;Na, Young-Ho;Shin, SangJoon;Jang, SeYong;Kim, SangYong;Cho, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.446-457
    • /
    • 2012
  • Aeroelastic analysis of an aircraft with a high aspect ratio wing for medium altitude and long endurance capability was attempted in this paper. In order to achieve such an objective, various structural models were adopted. The traditional approach has been based on a one-dimensional Euler-Bernoulli beam model. The structural analysis results of the present beam model were compared with those by the three-dimensional NASTRAN finite element model. In it, a taper ratio of 0.5 was applied; it was comprised of 21 ribs and 3 spars, and included two control surfaces. The relevant unsteady aerodynamic forces were obtained by using ZAERO, which is based on the doublet lattice method that considers flow compressibility. To obtain the unsteady aerodynamic force, the structural mode shapes and natural frequencies were transferred to ZAERO. Two types of unsteady aerodynamic forces were considered. The first was the unsteady aerodynamic forces which were based on the one-dimensional beam shape; the other was based on the three-dimensional FEM model shape. These two types of aerodynamic forces were compared, and applied to the foregoing flutter analysis. The ultimate goal of the present research is to analyze the possible interaction between the rigid-body degrees of freedom and the aeroelastic modes. This will be achieved after the development of a reliable nonlinear beam formulation that would validate the current results as well as enable a thorough investigation of the nonlinearity. Moreover, such analysis will allow for an examination of the above-mentioned interaction between the flight dynamics and aeroelastic modes with the inclusion of the rigid body degrees of freedom.

Hydroelastic Vibration Analysis of Structures in Contact with Fluid

  • Chung, Kie-Tae;Kim, Young-Bok;Kang, Ho-Seung
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.18-28
    • /
    • 1994
  • In the vibration analysis of submerged or floating bodies such as ships and offshore structures, the coupled system between fluid and structure should be considered using the compatibility conditions on the wetted surface. It is well known that the hydroelastic vibration analysis of structures in contact with fluid can be done by applying the finite element method(FEM) to structures and the boundary element method(BEM) to the fluid domain. However, such an approach is impractical due to the characteristics of the fully coupled added mass matrix of fluid on the entire wetted surface. To overcome this difficulty, an efficient approach based on a reanalysis scheme is proposed in this paper. The proposed method can be applied for cases of higher local modes and beam-like modes for which three-dimensional reduction factors are not known. The three dimensional reduction factors are not needled and thus the restrictions can be removed in the analyses of non-beam like modes or local vibration modes by considering fluid-structure interaction. The validity and calculation efficiency of the proposed method are proved through numerical examples.

  • PDF

Analysis of Three-Dimensional Cracks in Inhomogeneous Materials Using Fuzzy Theory

  • Lee, Yang-Chang;Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.119-123
    • /
    • 2005
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. 3D finite element method(FEM) was used to obtain the SIF for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy theory. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete FE model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. The results were compared with those surface cracks in homogeneous materials. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.