• Title/Summary/Keyword: three-axis rotation

Search Result 127, Processing Time 0.025 seconds

Dynamics of Angular Running Turns in Foot Effectiveness (각도별 런닝 턴 시 발의 효과에 관한 동역학적 분석)

  • Shin, Seong-Hyoo;Park, Hyun-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.663-669
    • /
    • 2009
  • The purpose of this study was to investigate the functional role of foot effectiveness when humans execute running turn maneuvers. Foot rotation angle at the starting turn and body angle at the vertical axis were analyzed through three-dimensional image analysis and ground reaction force analysis. Then, we created a simple equation: foot effectiveness = total foot rotation angle/total body rotation angle at the vertical axis. This equation made it possible to explain the dynamics of angular running turns. We analyzed data from running turns(0, 30, and 60) at average initial running velocities of 4.5, as well as rotations around the vertical axis during the running turns. As a result, the stance time, foot placement, and left and right force increased.

Registration of Multiple CT Images Using Principal Axis-based Rigid Body Transformation (주축기반 강체변환을 이용한 다중 CT 영상의 정합)

  • 유선국;김용욱;이혜연;김희중;김기덕;김남현
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.500-505
    • /
    • 2003
  • In this paper, the method to register multiple sets of skull CT images to absolute coordinate system is proposed. Contrary to correspondence paired mapping of previous techniques, four anatomical landmark points, three coplanar points and one non-coplanar point, compose three principal axes simple and unique for efficient registration by means of rigid body transformation. Throughout the numerical simulation with added random noises, the error performances in terms of different rotation and rounding-off of landmark points, and incorrect localization of anatomical landmark and target points are quantitatively analyzed to generalize the proposed technique. Experiments using real skull CT images demonstrate the feasibility for an efficient use in clinical practice.

The Geometrical Mode Analysis of an Elastically Suspended Rigid Body with Planes of Symmetry (대칭면을 갖는 강체 진동계의 진동모드에 대한 기하학적 해석)

  • Dan, Byeong-Ju;Choe, Yong-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.110-117
    • /
    • 2000
  • Vibration modes obtained from a modal analysis can be better explained from a screw theoretical standpoint. A vibration mode can be geometrically interpreted as a pure rotation about the vibration center in a plane and as the twisting motion on a screw in a three dimensional space. This paper, presents the method to diagonalize a spatial stiffness matrix by use of a parallel axis congruence transformation. It also describes that the stiffness matrix diagonalized by a congruence transformation, can have the planes of symmetry depending on the location of the center of elasticity. For a plane of symmetry, any vibration mode can be expressed by the axis of vibration. Analytical solutions for the axis of vibration has been derived.

robotic cell for the filament winding (로봇을 이용한 필라멘트 와인딩 셀에 관한 연구)

  • 최경현;김성청
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1165-1168
    • /
    • 1995
  • This paper describes the evaluation of a robot based filament winding cell consisting of an industrial robot (ASEA IRB 6/2) and an in-house fabricated mandrel drive mechanism, both being coordinated by a personal computer. As in many manufacturing processes, tradeoffs exist between accuracy and speed. The accuracy versus speed relationships of the robotic winding cell were experimentally determined for discrete, fine and medium movement modes while traversing a segmented delivery eye path for a cylindrical mandrel in three configurations (in-line, offset and angled with respect to the axis of rotation). the results show that the robot winding cell is appropriate for very accurate winding of fibre strands if the mandrel axis is concentric with the mandrel drive axis and the discrete mode(i.e. low speed) of the robot is used.

  • PDF

Development of the Off-vertical Rotary Chair and Visual Stimulation system for Evaluation of the Vestibular Function (전정기능 평가를 위한 탈수직축 회전자극 시스템 및 HMD 시스템의 개발)

  • Kim Gyu-Gyeom;Ko Jong-Sun;Park Byung-Rim
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.377-380
    • /
    • 2001
  • The vestibular system located in the inner ear controls reflex body posture and movement. It has the semicircular canals sensing an angular acceleration and the otolith organs sensing a linear acceleration. With this organic signal, medical doctor decide if a person has disease or not. To obtain this data, a precision stimular system is considered. Robust control is needed to obtain eye signals induced by off-vertical axis rotation because of an unbalanced load produced by tilting the axis of the system upto 30 degrees. In this study, off-vertical axis rotatory system with visual stimulation system are developed. This system is consisted of head mounted display for generating horizontal, vertical, and three dimensional stimulus patterns. Furthermore wireless recording system using RF modem is considered for noiseless data transmission.

  • PDF

Development of the Electronic compass for Automatic Correction do Deviation (自動自差修正이 가능한 電子컴퍼스의 개발에 관한 연구)

  • Ahn, Young-Wha;Shin, Hyeong-Il;Shirai, Yasuyuki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • The Electronic compass made as a pilot model in this research is comprised of a three axis magnetic sensor, an accustar clinometer, and a fiber optic gyro sensor. The results confirming the output character, performance, and the accuracy of the deviation corrects of each sensor are as follows: 1) As for the output character of the three axis magnetic sensor, the magnetic field showed a cosine curve on the X axis, a - sine curve on the Y axis, and constant figures on the Z sensor. The horizontal component H and the vertical component V of the terrestrial magnetism calculated from the output voltage were 33.2${\mu}$T and 23.95${\mu}$T respectively. 2) When the fiber optic gyro sensor is fixed on the electromotive rotation transformation and has made a clockwise rotation with the speed of 10/sec, 20/sec, and 30/sec, the relationship between the output and the rotation angle of the fiber optic gyro sensor showed proportionally constant values. 3) When the magnetic field was induced with a magnet, the deviation before the correction was significant at a high of 25. However, the deviation after the correction using Poisson correction was in the 2 range, significantly lower than before the correction. It was confirmed that automatic deviation corrects are possible with the electronic compass made as a pilot model in this research.

Development of the off-vertical rotatory chair and visual stimulation system for evaluation of the vestibular function (전정기능 평가를 위한 탈수직축 회전자극 시스템 및 HMD 시스템의 개발)

  • 김규겸;고종선;박병림;김인동
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.325-332
    • /
    • 2001
  • The vestibular system located in the inner ear controls reflex body posture and movement, It has the semicircular canals sensing an angular acceleration and the otolith organs sensing a linear acceleration. With this organic signal, medical doctor decide if a person has disease or not. To obtain this data, a precision stimular system is considered. Robust control is needed to obtain eye signals induced by off-vertical axis rotation because of an unbalanced load produced by tilting the axis of the system upto 30 degrees. In this study, off-vertical axis rotatory system with visual stimulation system are developed. This system is consisted of head mounted display for generating horizontal, vertical, and three dimensional stimulus patterns. Furthermore wireless recording system using RF modem is considered for noiseless data transmission. Detailed data was described.

  • PDF

Technique of Measuring Wind Speed and Direction by Using a Roll-rotating Three-Axis Ultrasonic Anemometer (II) (롤 회전하는 3축 초음파 풍속계를 활용한 풍향 풍속 측정기법(II))

  • Chang, Byeong Hee;Lee, Seunghoon;Kim, Yang won
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • In a previous study, a technique for measuring wind speed and direction by using a roll-rotating three-axis ultrasonic anemometer was proposed and verified by wind tunnel tests. In the tests, instead of a roll sensor, roll angle was trimmed to make no up flow in the transformed wind speeds. Verification was done in point of the residual error of the rotation effect treatment. In this study, roll angle was measured from the roll motor encoder and the transformed wind speed and direction on the test section axis were compared with the ones provided to the test section. As a result, up to yaw $20^{\circ}$ at a wind speed of 12 m/sec or over, the RMS error of wind speed was within the double of the ultrasonic anemometer error. But at yaw $30^{\circ}$, it was over the double of the ultrasonic anemometer error. Regardless of wind speed, at yaw $20^{\circ}$ and $30^{\circ}$, the direction error was within the double of the ultrasonic anemometer error. But at yaw $10^{\circ}$ or less, it was within the error of the ultrasonic anemometer itself. This is a very favorable characteristic to be used for wind turbine yaw control.

Optimum Design of 3-Dimensional Panel Surface Grinder System (3차원 표면 연마기 시스템의 최적설계)

  • 이수훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.52-58
    • /
    • 2000
  • the quality of a TV is closely connected with the high quality surface of Braun tube. To get high quality surface an improved grinding system is needed. It has three main parts : the housing part of supporting frame the outershaft part rotat-ed by motor and the innershaft part having eccentricity from the rotation axis of the outershaft. the housing part and the outershaft part are connected by outerbearings, The outershaft part and the innershaft part are connected by innerbearings. Although the outershaft part is rotated at high-speed the innershaft part is not rotated by offset coupling. The high quality grinding surface can be obtained by this mechanism of panel surface grinder, Because the innershaft is unbalanced by eccentricity from rotation axis of outershaft the unbalancing vibration is resulted In this rotor system with high-speed rota-tion the unbalancing vibration makes the opertion unstable. In this research the transfer function is obtained bythe frequency response analysis of finite element model. The simu-lation result is proved by comparing with the experimental result measured by signal analyzer Then the results are corre-lated. in order to improve the design an optimization method is used instead of two-planes balancing method The parts of the 3-dimensional panel surface grinder satisfy the each constraint, The result shows that the design of the panel surface grinder can be optimized.

  • PDF

Finite Element Analysis for Time Response of a Flexible Spinning Disk with Translating Misalignment (회전축 정렬불량을 가지는 유연회전디스크의 유한요소법을 이용한 시간응답해석)

  • Heo, Jin-Uk;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1905-1913
    • /
    • 2002
  • Using the finite element method, this study investigates the dynamic time responses of a flexible spinning disk of which axis of rotation is misaligned with the axis of symmetry. The misalignment between the axes of symmetry and rotation is one of the major vibration sources in optical disk drives such as CD-ROM, CD-R, CD-RW and DVD drives. Based upon the Kirchhoff plate theory and the von-Karman strain theory, three coupled equations of motion for the misaligned disk are obtained: two of the equations are for the in-plane motion while the other is for the out-of-plane motion. After transforming these equations into two weak forms for the in-plane and out-of-plane motions, the weak forms are discretized by using newly defined annular sector finite elements. Applying the generalized-$\alpha$ time integration method to the discretized equations, the time responses and the displacement distributions are computed and then the effects of the misalign ment on the responses and the distributions are analyzed. The computation results show that the misalignment has an influence on the magnitudes of the in-plane displacements and it results in the amplitude modulation or the beat phenomenon in the time responses of the out-of-plane displacement.