• 제목/요약/키워드: three dimensional-numerical analysis

검색결과 1,772건 처리시간 0.027초

3 차원 입체요소를 사용한 사출성형품의 잔류응력 예측 및 후변형 해석 (Residual Stress Estimation and Deformation Analysis for Injection Molded Plastic Parts using Three-Dimensional Solid Elements)

  • 박근;안종호;임충혁
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.507-514
    • /
    • 2003
  • Most of CAE analyses for injection molding have been based on the Mele Shaw's approximation: two-dimensional flow analysis. in some cases, that approximation causes significant errors due to loss of the geometrical information as well as simplification of the flow characteristics in the thickness direction. Although injection molding analysis software using three-dimensional solid elements has been developed recently, such as Moldflow Flow3D, it does not contain a deformation analysis function yet. The present work covers three-dimensional deformation analysis or injection molded plastic parts using solid elements. A numerical scheme for deformation analysis has bun proposed from the results of injection molding analysis using Moldflow Flow3D. The accuracy of the proposed approach has been verified through a numerical analysis of rectangular plates with various thicknesses in comparison with the classical shell-based approach. In addition, the reliability of the approach has also been proved through an industrial example. an optical plastic lens, in comparison of real experiments.

사류펌프 내 삼차원 유동의 수치해석 (NUMERICAL ANALYSIS OF THREE-DIMENSIONAL FLOW IN A MIXED-FLOW PUMP)

  • 안형진;김진혁;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.223-226
    • /
    • 2009
  • This paper presents three-dimensional flow analysis for a mixed-flow pump which consists of a rotor and a stator. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved by the commercial CFD code CFX 11.0. Structured grid system is constructed in the computational domain, which has O-type grids near the blade surfaces and H-type grids in other regions. Validation of the numerical results was performed with experimental data for head coefficients and hydraulic efficiencies at different flow coefficients. This paper shows that the pump characteristics can be predicted effectively by numerical analysis.

  • PDF

지하 대공동의 3차원 굴착거동에 관한 연구 (Three Dimensional Behaviour of the Rock Mass around a Large Rock Cavern during Excavation)

  • 이영남;서영호;주광수
    • 터널과지하공간
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 1998
  • This paper presents the results of deformation measurement and numerical analysis carried out to study the behaviour of the rock mass around large underground oil storage caverns. Displacements during excavation have been monitored using borehole extensometers which had been installed before the excavation of caverns proceeded. Numerical analysis has been carried out to examine the three-dimensional behaviour of rock and the face advance effect. The input parameters for this analysis were determined from the results of laboratory and field tests. The deformation modulus of the rock mass was determined from plate loading test at the site and in-situ stresses were measured from the overcoring method with USBM deformation gauge. The results from this study gave a clear picture for three-dimensional behaviour of the rock mass, hence would be used for the optimum design.

  • PDF

차량용 열교환기의 주름진 루터 휜에 대한 3차원 성능해석 (Three Dimensional Analysis for the Performance of the Corrugated Louver Fin for a Vehicle Heat Exchanger)

  • 박봉수;조재헌;한창섭
    • 설비공학논문집
    • /
    • 제14권2호
    • /
    • pp.116-126
    • /
    • 2002
  • A three dimensional numerical analysis of the corrugated louver fin for a vehicle heat exchanger was performed. The heat transfer rate and the air pressure drop of the corrugated louver fins for a slim heater were compared with experimental results at the same operating conditions. As for the slim heater fin, we found an optimum fin pitch at certain operating conditions. As the fin pitch increased, the air pressure drop decreased. The vertical or flat top fin was superior to the common declined fin in the aspect of heat transfer performance. As the louver length increased, both the heat transfer rate and the air pressure drop increased.

3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구 (NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO)

  • 우철훈;김재수;최홍일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

공동의 폭 변화에 따른 3차원 초음속 공동 유동연구 (NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO)

  • 우철훈;김재수
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.

베어링 지지 효과를 고려한 3 차원 로터동역학 해석 (Three-Dimensional Rotordynamic Analysis Considering Bearing Support Effects)

  • 박효근;김동현;김명국;전승배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.902-909
    • /
    • 2006
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and fun three-dimensional models. The Present computational method is based on the general finite element method with rotating gyroscopic effects of a rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis methods and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test conducted in this study.

  • PDF

인장계규식 해양구조물의 동적응답해석(I) (A Dynamic Response Analysis of Tension Leg Platforms in Waves (I))

  • 구자삼;김진하;이창호
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.161-172
    • /
    • 1995
  • A numerical procedure is described fro predicting the motion and structural responses of tension leg platforms(TLPs) in waves. The developed numerical approach is based on a combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in tow-step analysis method. Both the hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural whole structure are formulated using element-fixed coordinate systems which have the origin at the node of the each hull element and move parallel to a space-fixed coordinate system. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, concerning the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

인장 계류식 해양구조물의 동적응답 해석법의 개발 (Development of a Dynamic Response Analysis Method of Tension Leg Platforms in Waves)

  • 구자삼;이창호;홍봉기
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.133-146
    • /
    • 1993
  • A numerical procedure is described for predicting the motion and structural responses of tension leg platforms (TLPs) in waves. The developed numerical approach is based on combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in usual two-step analysis method, proposed by Yoshida et. al. .The hydrodynamic interactions among TLP members, such as columms and pontoons, are included in the motion and structural analyses. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, of the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

유선함수를 이용한 3 차원압출의 상계해석 (An Upper Bound Analysis of the Three-Dimensional extrusion of Shapes with the Use of Dual Stream Functions( I ))

  • 김희송;조용이
    • 한국안전학회지
    • /
    • 제7권4호
    • /
    • pp.85-94
    • /
    • 1992
  • This paper, discribes analysis of theree - dimensional extrusion with the use of dual stream functions, By this method admissible velocity fields for the extrusion of three- dimensional flow was newly derived kinematically. For square section the extrusion pressure was calculated by numerical solution program which was based on the upper bound analysis. The relationship between relative extrusion pressure and reduction of area, relative die length and constant friction factors were successfully calculated which was newly developed in this study. The results could be applied to design extrusion die.

  • PDF