• Title/Summary/Keyword: thioredoxin

Search Result 159, Processing Time 0.021 seconds

Activity of Human Dihydrolipoamide Dehydrogenase Is Largely Reduced by Mutation at Isoleucine-51 to Alanine

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.223-227
    • /
    • 2006
  • Dihydrolipoamide dehydrogenase (E3) belongs to the pyridine nucleotide-disulfide oxidoreductase family including glutathione reductase and thioredoxin reductase. It catalyzes the reoxidation of dihydrolipoyl moiety of the acyltransferase components of three $\alpha$-keto acid dehydrogenase complexes and of the hydrogen-carrier protein of the glycine cleavage system. Isoleucine-51 of human E3, located near the active disulfide center Cys residues, is highly conserved in most E3s from several sources. To examine the importance of this highly conserved Ile-51 in human E3 function, it was substituted with Ala using site-directed mutagenesis. The mutant was expressed in Escherichia coli and highly purified using an affinity column. Its E3 activity was decreased about 100-fold, indicating that the conservation of the Ile-51 residue in human E3 was very important to the efficient catalytic function of the enzyme. Its altered spectroscopic properties implied that conformational changes could occur in the mutant.

Expressed Sequence Tags of the Wheat-rye Translocation Line Possessing 2BS/2RL

  • Jang, Cheol-Seong;Hong, Byung-Hee;Seo, Yong-Weon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.302-307
    • /
    • 1999
  • Hamlet (PI549276) possessing 2RL was obtained by cross between a wheat cultivar ND7532 (Froid/Centurk) and a rye cultivar Chaupon. Chaupon was known to have resistant gene to biotype L of Hessian fly [Mayetiola destructor (Say)] larvae. The wheat-rye translocation line (Coker797*4/Hamlet) was also known to be resistant to biotype L of Hessian fly larvae. We analysed a set of 96 ESTs from the wheat-rye translocation line (2BS/2RL). ESTs were classified by various physiological processings, such as primary metabolism, secondary metabolism, transcription, translation, transport, signal transduction, defense, transposable element, and others. Three sequences encoding thioredoxin peroxidase, 26S rRNA, and rubisco small subunits were homologous to registered genes in rye. Although limited number of clones were used to develop ESTs, these clones and their sequence information may be useful for researchers studying general physiology and molecular biology on the translocation line.

  • PDF

Cytotoxicity of Copper Nanoparticles in Cultured Human Bronchial Epithelial Cells (BEAS-2B) (구리로 만든 나노입자의 기관지상피세포에 미치는 독성)

  • Park Eun-Jung;Park Kwangsik
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.303-307
    • /
    • 2005
  • Nanomaterials, which ranges in size from 1 to 100 nm, have been used to create uqnique devices at the nanoscale level possessing novel physical and chemical functional properties. However, the toxicities of nanomaterials have not been fully tested and the risk of nanomaterials is emerging issues in these days. In this study, the cytotoxicity of copper nanoparticles was tested in cultured human bronchial epithelial cells. As a results, copper nanoparticles showed cytotoxicity similar with cupric ion and the apoptotic mechanisms of DNA fragmentation and caspase-3 activation were involved. Induction of heme oxygenase-1 and thioredoxin reductase by copper nanoparticles indicated that cytotoxicity of copper nanoparticles is likely to be mediated through oxidative stress.

Structural Arrangement for Functional Requirements of Brain Recombinant 4-Aminobutyrate Aminotransferase

  • Sung, Bo-Kyung;Kim, Young-Tae
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.43-48
    • /
    • 2000
  • 4-Aminobutyrate aminotransferase is a key enzyme of the 4-aminobutyric acid shunt. It converts the neurotransmitter 4-aminobutyric acid to succinic semialdehyde. In order to study the structural and functional aspects of catalytically active Cys residues of pig brain 4-aminobutyrate aminotransferase, we purified the active form in E. coli by coproduction of thioredoxin. The structural arrangement for functional requirements of a dimeric protein using a bifunctional sultbydryl reagent was then characterized, and the spatial proximity between the essential SH groups and a cofactor (pyridoxal-5'-phosphate) binding site was determined. The bifunctional sultbydryl reagent DMDS reacted with the enzyme at the ratio of one molecule per enzyme dimer. This resulted in an approximately 50% loss of enzymatic activity. The spatial proximity of the distance between the essential SH groups and the cofactor-binding site was determined by the energy transfer measurement technique. The result (approximate 20 ${\AA}$) suggested that cross-linking of two sulfhydryl groups with DMDS is not near a PLP binding site.

  • PDF

Induction of Oxidative Stress by Mananese Chloride in Cultured $H_9C_2$ Cells (랫드 심근세포유래 $H_9C_2$ 세포주에서의 망간화합물의 산화적스트레스 유도작용)

  • Park, Eun-Jung;Park, Kwang-Sik
    • YAKHAK HOEJI
    • /
    • v.52 no.3
    • /
    • pp.212-218
    • /
    • 2008
  • Manganese is a naturally occurring element which is widespread in the environment. Also, manganese is an essential trace element and plays a key role in important biological reactions catalyzed by enzymes. However, exposure to high levels of manganese can cause toxicity in neurone and inhalation system, also damage in various tissues. We investigated the toxicity induced by manganese compound ($MnCl_2$) in cultured rat cardiomyocytes. Treatment of manganese to cultured cardiomyocyte led to cell death, reactive oxygen species (ROS) increase, and cytosolic caspase-3 activation. The ROS increase was related with the decreased level of glutathione. Expressions of ROS related genes such as heme oxygenase-1, thioredoxin reductase, and NADH quinone oxidase were significantly induced in manganese treated cells. These results suggest that manganese induce oxidative stress and apoptosis in cardiomyocytes, and may be the one of risk factors to cause heart dysfunction in vivo.

Study on the soluble exoression of recombinant human eoidermal growth factor using various fusion oartners in Escherichia coli (재조합 대장균에서 다양한 융합 파트너를 이용한 인간 상피세포성장인자의 발현 연구)

  • Kim, Byung-Lip;Baek, Jung-Eun;Kim, Chun-Sug;Lee, Hyeok-Weon;Ahn, Jung-Oh;Lee, Hong-Weon;Jung, Joon-Ki;Lee, Eun-Gyo;Kim, In-Ho
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.205-212
    • /
    • 2008
  • The efficient soluble expression of human epidermal growth factor (hEGF) was achieved by using functional fusion partners in cytoplasm and periplasm of Escherichia coli (E. coli). hEGF was over-expressed in inactive inclusion body form in cytoplasm of E. coli due to improper disulfide bond formation and hydrophobic interaction, yielding about 5.9 mg/L in flask culture. Six functional fusion partners were introduced by linking to N-terminal part of hEGF gene for the high-level expression of soluble and active hEGF in cytoplasm and peri plasm region. Three fusion partners for cytoplasmic expression such as acidic tail of synuclein (ATS), thioredoxin (Trx) and lipase, and three fusion partners for periplasmic expression such as periplasmic cystein oxidoreductases (DsbA and DsbC) and maltose binding protein (MBP) were investigated. hEGF fused with ATS and DsbA showed over 90% of solubility in cytoplasm and periplasm, respectively. Especially DsbA was found to be an efficient fusion partner for soluble and high-level expression of hEGF, yielding about 18.1 mg/L and three-fold higher level compared to that of insoluble non-fusion hEGF in cytoplasm. Thus, heterologous proteins containing complex disulfide bond and many hydrophobic amino acids can effectively be produced as an active form in E. coli by introducing a suitable peptide or protein.

Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377 (산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가)

  • Kim, Il-Sup;Yun, Hae-Sun;Yang, Ji-Young;Lee, Oh-Seok;Park, Heui-Dong;Jin, Ing-Nyol;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • Oxidative stress is a consequence of an imbalance of the defense system against cellular damage generated by reactive oxygen species (ROSs) such as superoxide anions (menadione; MD). Most organisms have evolved a variety of defense systems to protect cells from adverse conditions. In order to evaluate stress tolerance against oxidative stress generating MD, comparative analyses of antioxidant capacity, or free radical scavenger ability, were performed between S. cerevisiae KNU5377 (KNU5377) and three wild-type S. cerevisiae strains. In a medium containing 0.4 mM MD, the KNU5377 strain showed higher cell viability and antioxidant ability, and contained higher levels of trehalose, superoxide dismutase, thioredoxin system, glucose-6-phosphate dehydrogenase, and some heat shock proteins. The KNU5377 strain also produced a lower level of oxidative stress biomarker than the other three yeast strains. These results indicate that S. cerevisiae KNU5377 has a higher level of tolerance to oxidative stress due to the increased expression of cell rescue proteins and molecules, thus alleviating cellular damage more efficiently than other S. cerevisiae strains.

Peroxiredoxin System of Aspergillus nidulans Resists Inactivation by High Concentration of Hydrogen Peroxide-Mediated Oxidative Stress

  • Xia, Yang;Yu, Haijun;Zhou, Zhemin;Takaya, Naoki;Zhou, Shengmin;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.145-156
    • /
    • 2018
  • Most eukaryotic peroxiredoxins (Prxs) are readily inactivated by a high concentration of hydrogen peroxide ($H_2O_2$) during catalysis owing to their "GGLG" and "YF" motifs. However, such oxidative stress sensitive motifs were not found in the previously identified filamentous fungal Prxs. Additionally, the information on filamentous fungal Prxs is limited and fragmentary. Herein, we cloned and gained insight into Aspergillus nidulans Prx (An.PrxA) in the aspects of protein properties, catalysis characteristics, and especially $H_2O_2$ tolerability. Our results indicated that An.PrxA belongs to the newly defined family of typical 2-Cys Prxs with a marked characteristic that the "resolving" cysteine ($C_R$) is invertedly located preceding the "peroxidatic" cysteine ($C_P$) in amino acid sequences. The inverted arrangement of $C_R$ and $C_P$ can only be found among some yeast, bacterial, and filamentous fungal deduced Prxs. The most surprising characteristic of An.PrxA is its extraordinary ability to resist inactivation by extremely high concentrations of $H_2O_2$, even that approaching 600 mM. By screening the $H_2O_2$-inactivation effects on the components of Prx systems, including Trx, Trx reductase (TrxR), and Prx, we ultimately determined that it is the robust filamentous fungal TrxR rather than Trx and Prx that is responsible for the extreme $H_2O_2$ tolerence of the An.PrxA system. This is the first investigation on the effect of the electron donor partner in the $H_2O_2$ tolerability of the Prx system.