• 제목/요약/키워드: thiol peroxidase

검색결과 27건 처리시간 0.026초

Survival of APC-mutant colorectal cancer cells requires interaction between tankyrase and a thiol peroxidase, peroxiredoxin II

  • Kang, Dong Hoon;Lee, Joanna H.S.;Kang, Sang Won
    • BMB Reports
    • /
    • 제50권8호
    • /
    • pp.391-392
    • /
    • 2017
  • Overexpression of mammalian 2-Cys peroxiredoxin (Prx) enzymes is observed in most cancer tissues. Nevertheless, their specific roles in colorectal cancer (CRC) progression has yet to be fully elucidated. Here, a novel molecular mechanism by which PrxII/Tankyrase (TNKS) interaction mediates survival of adenomatous polyposis coli (APC)-mutant CRC cells was explored. In mice with an inactivating APC mutation, a model of spontaneous intestinal tumorigenesis, deletion of PrxII reduced intestinal adenomatous polyposis and thereby increased survival. In APC-mutant human CRC cells, PrxII depletion hindered PARP-dependent Axin1 degradation through TNKS inactivation. $H_2O_2-sensitive$ Cys residues in the zinc-binding domain of TNKS1 was found to be crucial for PARsylation activity. Mechanistically, direct binding of PrxII to ARC4/5 domains of TNKS conferred vital redox protection against oxidative inactivation. As a proof-of-concept experiment, a chemical compound targeting PrxII inhibited the growth of tumors xenografted with APC-mutation-positive CRC cells. Collectively, the results provide evidence revealing a novel redox mechanism for regulating TNKS activity such that physical interaction between PrxII and TNKS promoted survival of APC-mutant colorectal cancer cells by PrxII-dependent antioxidant shielding.

Proteome Analysis of Escherichia coli after High-dose Radiation

  • Lim, Sangyong;Lee, Misong;Joe, Minho;Song, Hyunpa;Kim, Dongho
    • 방사선산업학회지
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2011
  • Since proteomics can be employed to compare changes in the expression levels of many proteins under particular genetic and environmental conditions, using mass spectrometry to establish radiation stimulon, we performed two-dimensional gel electrophoresis and identified E. coli proteins whose expressions are affected by high dose of ionizing radiation. After exposure to 3 kGy, it was found that 6 proteins involved in carbon and energy metabolism were reduced. Although 4 of 7 protein spots showing a significant increase in expression level were neither identified nor classified, uridine phosphorylase (Udp), superoxide dismutase (SodB), and thioredoxin-dependent thiol peroxidase (Bcp) were proven to be up-regulated after irradiation. This suggests that E. coli subjected to high doses of radiation (3 kGy) may operate a defense system that is able to detoxify reactive oxygen species and stimulate the salvage pathway of nucleotide synthesis to replenish damaged DNA.

코리네박테리움 디프테리아 티올 특이성 항산화단백 DirA의 발현 및 특성 (Expression and Characterization of Thiol-Specific Antioxidant Protein, DirA of Corynebacterium diphtheriae)

  • Myung-Jai Choi;Kanghwa Kim;Won-Ki Choi
    • 대한의생명과학회지
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 1998
  • 효모의 티올특이성 항산화단백과 아미노산 서열상 상동성을 보이는 50종류의 단백은 새로운 항산화 단백군을 형성하며 또한 병원성 미생물에도 널리 분포하고 있으나 이들 단백의 생화학적 및 생리적인 기능은 거의 알려져 있지 않은 실정이다. 본 연구는 병원성 미생물의 티올특이성 항산화단백의 기능에 관한 연구로서 Saccharomyces cerevisiae의 TSA 및 Salmonella typhimurium alkcyl hydroperoxide reductase의 AhpC subunit와 상동성을 나타내는 Corynebacterium diphtheriae의 DirA 유전자를 PCR 방법으로 클로닝하고 대장균에 발현시킨 후 정제하여 항산화 특성을 조사하였다. 정제된 DirA는 티올을 함유하는 금속촉매 산화계인 DTT/Fe$^{3+}$를 선택적으로 억제하였으며 티오레독신 의존성 과산화물 분해활성을 나타내었다. DTT/Fe$^{3+}$ 금속촉매 산화계에 의한 효소의 불활성화를 50% 억제 하는 DirA의 농도는 0.12 mg/ml로 효모 TSA 항산화활성의 약1/4 수준이었으며, 효모의 티 오레 독신계와 반응시켰을때 과산화물 분해활성은 0.02 unit/mg로서 효모 TSA의 티오레독신 의존성 과산화물 분해활성의 1/20수준이었다. 정제된 단백질을 이용하여 항체를 제조하였으며 이항체를 이용하여 Corynebacterium diphtheriae에서 발현됨을 확인하였다. 이러한 결과를 통하여 Corynebacterium diphtheriae의 병원성은 숙주세포의 방어기전인 백혈구에 의하여 생성되는 과산화수소 또는 다른 활성산소종을 제거하는 DirA작용과 연관이 있는 것으로 사료된다.

  • PDF

Saccharomyces cerevisiae에서 이온화 방사선과 N-acetyl-L-cysteine 처리에 따른 세포 생존과 Superoxide Dismutase와 Catalase 유전자 발현 (Cell Survival and Expression of Superoxide Dismutase and Catalase Genes in Saccharomyces cerevisiae Treated with N-acetyl-L-cysteine and Ionizing Radiation)

  • 박지영;백동원;모하마드닐리;김진규
    • 환경생물
    • /
    • 제29권1호
    • /
    • pp.61-67
    • /
    • 2011
  • NAC는 GSH의 전구물질로, thiol기를 포함하는 항산화제 중 하나로 잘 알려져 있으며, 방사선 조사 시 발생하는 생체 내 영향을 감소시켜 생체 손상의 방호 및 회복에 도움을 주는 방사선 방어제로 이용된다. S. cerevisiae에서 항산화제 NAC를 전처리 함에 따라 이온화 방사선 조사에 따른 효모의 세포사멸 방어효과 및 superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx)와 같은 항산화 효소들의 유전자 발현을 분석하여 NAC의 항산화적 효과를 확인하였다. 효모는 다양한 농도의 NAC 전처리 후 다양한 선량의 이온화 방사선에 조사되었으며, 세포생존율은 세포형성단위(CFU)를 계수해 측정되었고, 항산화 효소의 유전자 발현은 real-time PCR수행 후 분석하였다. 우선적으로 효모에 NAC 처리를 위한 적정농도를 확인하였는데, 35 mM 이상의 NAC 농도에서 효모세포의 성장이 억제 되었다. NAC 전처리는 감마선 조사에 의한 세포사멸을 방어하지 않았으며, 100 Gy 방사선 조사는 항산화 효소들의 유전자 발현을 유도하였다. NAC 전처리 후 항산화 효소들의 유전자 발현은NAC의 농도 증가에 따라 감소하였다. 이러한 결과로,NAC의 높은 농도(35 mM 이상)는 효모세포의 성장을 저해하며, NAC는 이온화 방사선 조사에 따른 세포사멸을 방어할 수 없으나, 생체 내에서 활성산소종을 제거 하여 세포를 보호하는 유용한 항산화제임을 알 수 있었다.

흡연한 흰쥐 폐조직 항산화효소들의 특성 (Characterization of Antioxident Enzymes in the Lung of Rat Exposed to Cigarette Smoke)

  • 이영구;손형옥;임흥빈;이동욱;박준영
    • 한국연초학회지
    • /
    • 제15권1호
    • /
    • pp.3-14
    • /
    • 1993
  • 공기중에 존재하는 여러 산화성 물질들은 호흡기의 손상과 관련이 있는 것으로 알려지고 있으며 이와같은 산화성 물질에 의한 손상은 폐에 존재하는 항산화 물질이나 항산화 효소들에 의해 감소 또는 예방될 수 있다. 저자들은 폐의 항산화방어 기전에 대한 흡연의 영향을 흰쥐에서 관찰하였다. 횐쥐를 6개피의 담배연기에 일일 20분씩 90일간 전신 폭로했을때 조직내의 catalase와 superoxlde dismutase(SOD)의 활성이 유의하게 증가되었다(p<0.05) 그러나 glutathione peroxidase의 활성도는 변화되지 않았고 thiol 화합물의 함량은 흡연 시작후 15일에 44%까지 감소되었으나 그후 정상으로 회복되었다. 한편, 횐쥐를 1, 3, 5, 10 및 20개피의 담배연기에 같은 방법으로 15일간 노출시켰을때, catalase는 개피수에 따라서 증가되었고 총 SOD의 활성도는 5개피 이하에서만 특이하게 증가되었으며 대부분 Zn-SOD이었다. 폐에는 한 종의 Cu, Zn-SOD (pI 4.9)와 CN에 내성이 있는 두종의 Mn-SOD(pI 4.7, pI 7.9)가 존재하였고, 등전점이 4.7인 Zn-SOD가 주된 동위효소로써 흡연에 의해 유도되는 형태였다. 이 결과들은 흡연으로부터 폐의 보호는 초기에는 항산화 물질들의 소모로, 그리고 만성 흡연의 경우는 항산화 효소들의 유도로 이루어지며. 특히 Zn-SOD (pI 4.7)와 catalase가 중요한 역할을 하는 것으로 사료된다.

  • PDF

Contribution of Arginine 13 to the Catalytic Activity of Human Class Pi Glutathione Transferase P1-1

  • Kong, Ji-Na;Jo, Dong-Hyeon;Do, Hyun-Dong;Lee, Jin-Ju;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2497-2502
    • /
    • 2010
  • Arg13 is a conserved active-site residue in all known Pi class glutathione S-transferases (GSTs) and in most Alpha class GSTs. To evaluate its contribution to substrate binding and catalysis of this residue, three mutants (R13A, R13K, and R13L) were expressed in Escherichia coli and purified by GSH affinity chromatography. The substitutions of Arg13 significantly affected GSH-conjugation activity, while scarcely affecting glutathione peroxidase or steroid isomerase activities. Mutation of Arg13 into Ala largely reduced the GSH-conjugation activity by approximately 85 - 95%, whereas substitutions by Lys and Leu barely affected activity. These results suggest that, in the GSH-conjugation activity of hGST P1-1, the contribution of Arg13 toward catalytic activity is highly dependent on substrate specificities and the size of the side chain at position 13. From the kinetic parameters, introduction of larger side chains at position 13 results in stronger affinity (Leu > Lys, Arg > Ala) towards GSH. The substitutions of Arg13 with alanine and leucine significantly affected $k_{cat}$, whereas substitution with Lys was similar to that of the wild type, indicating the significance of a positively charged residue at position 13. From the plots of log ($k_{cat}/{K_m}^{CDNB}$) against pH, the $pK_a$ values of the thiol group of GSH bound in R13A, R13K, and R13L were estimated to be 1.8, 1.4, and 1.8 pK units higher than the $pK_a$ value of the wild-type enzyme, demonstrating the contribution of the Arg13 guanidinium group to the electrostatic field in the active site. From these results, we suggest that contribution of Arg13 in substrate binding is highly dependent on the nature of the electrophilic substrates, while in the catalytic mechanism, it stabilizes the GSH thiolate through hydrogen bonding.

산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절 (Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells)

  • 장호희;김선영;이상열
    • Journal of Plant Biotechnology
    • /
    • 제33권1호
    • /
    • pp.1-9
    • /
    • 2006
  • 도처에 분포하는 peroxiredoxins (Prxs)은 세포 내 방어신호전달 과정에서 다양한 기능을 하는 것으로 나타났다. Prxs는 크게 typical 2-Cys Prx, atypical 2-Cys Prx와 1-Cys Prx의 세 부류로 분류되는데, 이것들은 cysteine 잔기의 수와 촉매기전에 따라 구분된다. 세 종류의 단백질 중, N-말단에 peroxidatic cysteine 잔기를 포함하는 typical 2-Cys Prx는 $H_2O_2$ 분해과정 동안 과산화물-의존적인 sulfenic acid로의 산화와 thiol-의존적 환원과정이 순환되어 일어난다. Sulfenic acid는 고농도의 $H_2O_2$와 Trx, Trx reductase와 NADPH를 포함하는 촉매 요소의 존재하에 cysteine sulfenic acid로 과산화 될 수 있다 과산화된 2-Cys Prx는 ATP 의존성 효소인 sulfiredoxin의 작용에 의해 천천히 환원된다. 세포가 강력한 산화나 열 충격 스트레스에 노출되면, 2-Cys Prx는 LMW 단백질에서 HMW complex로 구조를 변화시켜 peroxidase에서 chaperone으로 기능의 전환을 일으킨다. 2-Cys Prx의 C-말단 부분 역시 이러한 구조적 전환에 중요한 역할을 한다. 따라서, C-말단이 잘려진 단백질은 과산화가 되지 않고 단백질의 구조와 기능이 조절될 수 없다. 이러한 반응들은 활성 자리인 peroxidatic cysteine 잔기에 의해 일차적으로 유도되며, 그것은 세포에서 '$H_2O_2$ sensor' 로서 작용하다. 2-Cys Prx의 가역적인 구조와 기능 변화는 세포가 외부자극에 적응하는 수단으로 작용하며, 아마도 세포내 방어신호체계를 활성화 시키는 것으로 생각된다. 특히, chloroplast에 존재하는 식물 2-Cys Prx는 촉매반응 동안 주된 구조적인 변화를 나타내는 역동적인 단백질 구조를 가지고 있어서, 산화-환원 의존적으로 super-complex를 형성하고 가역적으로 thylakoid membrane에 부착한다.