• 제목/요약/키워드: thiol group

검색결과 111건 처리시간 0.03초

Viologen 분자의 자기조립과 전기화학적 특성 (Self-Assembly and Electrochemical Properties of Viologen Particles)

  • 이동윤;박상현;신훈규;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.452-455
    • /
    • 2004
  • In this paper, investigations of the SAMs(self-assembled monolayers) of a thiol-fuctionalized viologen derivatives, $V_8SH$ and $SH_8V_8SH$, where, V is N,N'-dialkylbipyridinium (i.e. a viologen group), have been carried out by elucidate voltammetry date. The redox reactions are highly reversible and can be cycled many times without significant side reaction, which has been known as a nano-gram order mass detector through resonant frequency change self-assembly process of the viologen has been investigated with $QCM({\Delta}F)$. The assembling process of the $V_8SH$ and $SH_8V_8SH$ monolayers can be finished completely in about 1 hour. The measured frequency shift for $V_8SH$ and $SH_8V_8SH$ were about 351 and 172 Hz, respectively. From these values, we calculated that the mass adsorbed $V_8SH$ and $SH_8V_8SH$ were about 375 and 183 ng. We believe that this mass loss is caused by the simultaneous loss of the anions present within the monolayer for charge compensation of the viologen dications and some solvent.

  • PDF

Evidence of Tandem Repeat and Extra Thiol-groups Resulted in the Polymeric Formation of Bovine Haptoglobin: A Unique Structure of Hp 2-2 Phenotype

  • Lai, Yi An;Lai, I Hsiang;Tseng, Chi Feng;Lee, James;Mao, Simon J.T.
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.1028-1038
    • /
    • 2007
  • Human plasma Hp is classified as 1-1, 2-1, and 2-2. They are inherited from two alleles Hp 1 and Hp 2, but there is only Hp 1 in almost all the animal species. Hp 2-2 molecule is extremely large and heterogeneous associated with the development of inflammatory-related diseases. In this study, we expressed entire bovine Hp in E. coli as a $\alpha\beta$ linear form. Interestingly, the antibodies prepared against this form could recognize the subunit of native Hp. In stead of a complicated column method, the antibody was able to isolate bovine Hp via immunoaffinity and gelfiltration columns. The isolated Hp is polymeric containing two major molecular forms (660 and 730 kDa). Their size and hemoglobin binding complex are significantly larger than that of human Hp 2-2. The amino-acid sequence deducted from the nucleotide sequence is similar to human Hp 2 containing a tandem repeat over the $\alpha$ chain. Thus, the Hp 2 allele is not unique in human. We also found that there is one additional -SH group (Cys-97) in bovine $\alpha$ chain with a total of 8 -SH groups, which may be responsible for the overall polymeric structure that is markedly different from human Hp 2-2. The significance of the finding and its relationship to structural evolution are also discussed.

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.

Potential Chemoprevention Activity of Pterostilbene by Enhancing the Detoxifying Enzymes in the HT-29 Cell Line

  • Harun, Zaliha;Ghazali, Ahmad Rohi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6403-6407
    • /
    • 2012
  • Detoxifying enzymes are present in most epithelial cells of the human gastrointestinal tract where they protect against xenobiotics which may cause cancer. Induction of examples such as glutathione S-transferase (GST) and its thiol conjugate, glutathione (GSH) as well as NAD(P)H: quinoneoxidoreductase (NQO1) facilitate the excretion of carcinogens and thus preventing colon carcinogenesis. Pterostilbene, an analogue of resveratrol, has demonstrated numerous pharmacological activities linked with chemoprevention. This study was conducted to investigate the potential of pterostilbene as a chemopreventive agent using the HT-29 colon cancer cell line to study the modulation of GST and NQO1 activities as well as the GSH level. Initially, our group, established the optimum dose of 24 hours pterostilbene treatment using MTT assays. Then, effects of pterostilbene ($0-50{\mu}M$) on GST and NQO1 activity and GSH levels were determined using GST, NQO1 and Ellman assays, respectively. MTT assay of pterostilbene ($0-100{\mu}M$) showed no cytotoxicity toward the HT-29 cell line. Treatment increased GST activity in the cell line significantly (p<0.05) at 12.5 and $25.0{\mu}M$. In addition, treatment at $50{\mu}M$ increased the GSH level significantly (p<0.05). Pterostilbene also enhanced NQO1 activity significantly (p<0.05) at $12.5{\mu}M$ and $50{\mu}M$. Hence, pterostilbene is a potential chemopreventive agent capable of modulation of detoxifiying enzyme levels in HT-29 cells.

Effect of Chelation with Calcium Disodium EDTA on Haemato-biochemical and Trace Mineral Profile in Blood from Lead Exposed Calves

  • Patra, R.C.;Swarup, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권8호
    • /
    • pp.1130-1134
    • /
    • 2005
  • An experiment was performed using 20 calves of about one-month old to investigate the effect of chelation therapy with calcium disodium ethylenediaminetetraacetate ($CaNa_2$EDTA) alone or along with antioxidant $\alpha$-tocopherol in lead loaded calves on blood trace minerals, erythrocytic sulfahydryl groups and some haematobiochemical parameters. Fifteen calves were given lead orally at a daily dose of 7.5 mg of 99% pure lead acetate/kg body weight for 28 days. Then the lead was withdrawn on day 28 and the calves were randomly divided into three groups. Each group of five animals was either treated with $CaNa_2$EDTA alone at the dose rate of 110 mg/kg body weight in two divided doses for 4 days or along with $\alpha$-tocopherol at the dose rate of 100 mg/kg body weight orally daily for 7 days, keeping the remaining five calves as lead-exposed untreated controls. Blood samples were collected at the end of the lead exposure (day 0) and thereafter on day 2, 4, 7 and 10 from the start of the chelation treatment. The treatment with EDTA alone led to slow but non-significant improvement in blood copper level, but incorporation of antioxidant $\alpha$-tocopherol in chelation therapy resulted in its significant decline, as recorded on day 7-post treatment. Withdrawal of lead or treatment with $CaNa_2$EDTA alone or along with $\alpha$-tocopherol enhanced the erythrocytic thiol contents and the levels of T-SH and P-SH became statistically (p<0.05) comparable to those of lead-exposed controls by day 7 and 4, respectively. There was no significant (p>0.05) change in serum urea, creatinine, total protein and albumin levels between the treatment groups. It is concluded from the present investigation that treatment with $CaNa_2$EDTA at the present dose rate is safe to be used for chelation in lead loaded calves.

가자(Terminalia chebula) 추출물이 마우스의 생리활성에 미치는 영향 (Effect of Terminalia chebula on Physiological Activity in Mice)

  • 박종옥;이승은
    • 생명과학회지
    • /
    • 제14권1호
    • /
    • pp.148-153
    • /
    • 2004
  • 가자 추출물을 취하여 사람, 돼지, 쥐 및 개 등의 3% 적혈구용액으로 응집력시험을 행한 결과 7가지 적혈구 모두에 렉틴 활성이 나타났으며 $LD_{50}$는 390 mg/kg으로 측정되었다. 생리 활성에 대한 영향을 알아보고자 생체 내외인성 요인에 의한 친전자성 물질로 생체내에서 독작용, 노화, 발암 및 면역 억제작용을 유발하는 원인 물질인 free radical생성에 관여하는 효소인 XO 및 AO의 활성을 측정 한 결과, XO 에서는 일주일간 매일 300 mg/kg의 용량으로 가자 추출물을 투여한 군이 정상군보다 5배 증가되는 결과를 나타내었고 AO에서는 정상군보다 시료 투여군이 2배 증가되는 결과를 나타내었다 glutathione은 단백질이나 DNA합성, amino acid의 이동 반응 및 thiol기의 저장 등과 같은 생물학적으로 중요한 여러 가지 반응에 직접 관여하는 물질이다[16〕. 이에 간장 조직의 glutathione농도를 측정한 결과 간장 독성의 유발로 인한 효소 활성은 정상군에 비하여 1주간 매일 300 mg/kg의 용량으로 시료 투여한 군의 효소 활성이 79% 감소됨을 볼 수 있었다. 체내의 여러 가지 해독반응과정에 관여하는 GST효소활성을 측정 한 결과 정상군에 비해 1주간 매 일 300 mg/kg의 용량으로 시료 투여한 군이 66%정도 감소된다는 결과를 볼 수 있었다. glutathione 합성에 관여하는 $\gamma$-GCS의 활성과 산화형 glutathione을 환원형 glutathione으로 환원시키는 GR의 활성을 관찰한 결과 가자 추출물 투여군이 정상군보다 GR의 활성은 80% 감소되었고, 합성에 관여하는 $\gamma$-GCS의 활성은 정상군과 비교할 때 약간의 감소만을 나타내 glutathione함량 변동에 크게 영향을 미치지 않는 것으로 생각된다.

Carbamate-Based Surface Reactions for Release of Amine Molecules from Electroactive Self-Assembled Monolayers

  • Hong, Dae-Wha;Kang, Kyung-Tae;Hong, Seok-Pyo;Shon, Hyun-Kyong;Lee, Tae-Geol;Choi, In-Sung S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.208-209
    • /
    • 2011
  • In this work, we developed self-assembled monolayers (SAMs) of alkanethiols on gold that can release amine groups, when an electrical potential was applied to the gold. The strategy was based on the introduction of the electroactive carbamate group, which underwent the two-electron oxidation with simultaneous release of the amine molecules, to alkanethiols. The synthesis of the designed thiol compounds was achieved by coupling isocyanate-containing compound with hydroquinone. The electroactive thiols were mixed with hydroxyl-containing alkanethiol [$HS(CH_2)_{11}OH$] to form mixed monolayers, and cyclic votammetry was used for the characterization of the release. The mixed SAMs showed a first oxidation peak at +540 mV (versus Ag/AgCl reference electrode), demonstrating irreversible conversion from carbamate to hydroqinone with simultaneous release of the amine groups. The second and third cycles showed typical reversible redox reaction of hydroquinone and quione: the oxidation and reduction occurred at +290 mV and -110 mV, respectively. The measurement of ToF-SIMS further indicates that electrochemical-assisted chemical reaction successfully released amine groups. This new SAM-based electrochemistry would be applicable for direct release of biologically active molecules that contain amine groups.

  • PDF

Alantolactone의 구조와 생물학적 활성 (Relationship Between Biological Activity and Structure of Alantolactone)

  • 권영명
    • Journal of Plant Biology
    • /
    • 제17권2호
    • /
    • pp.69-83
    • /
    • 1974
  • To elucidate the relationship between chemical structure and biological activity of alantolactone, and also to investigate the relationship between the growth of cells and the respiration of Chlorella pyrenoidosa affected by alantolactone, alantolactone and isoalantolactone were isolated from Inula helenium L., and di-, and tetrahydroalantolactones were prepared by the hydrogenation. At a concentration of 5$\times$10-5M alantolactone, the growth rate of Chlorella was greatly reduced. The viability of cells was also reduced over 50% within 2 hr at a concentration of 2.5$\times$10-4M alantolactone. However, oxygen uptake was increased by 20% over 3 hr. And 14CO2 production from glucose-1-14C, glucose-6-14C and 14C-acetate-U.L. was also increased by alantolactone. Biological activityof alantolactone was significantly reduced by cysteine, reduced glutathione or cystine but not by tryptophan or histidine. It was detected by spectrophotometrically and by TLC that alantolactone was also reacted with thiols except cystine. The solution of alantolactone reached with thiol gave the UV absorption spectrum of $\alpha$-saturated ${\gamma}$-lactone, and most of SH groups were disappeared by the addition reaction. From the reaction mixture of alantolactone and cysteine, a lactone adduct was isolated and purified. Isoalantolactone had shown similar activity as alantolactone, however, it was appeared that di-, and tetrahydroalantolactones were not only inactive biologically but also in vitro. It was concluded that there was no correlationship between increased respiration rate and mortality of Chlorella. During the respiration TCA cycle was activated, however it was uncertain that the activation of EMP or HMP was also appeared. Alantolactone and isoalantolactone were biologically active compounds but others were inactive. The reactivity of $\alpha$-methylene ${\gamma}$-lactone moiety toward SH group was principally responsible for its biological activity in sesquiterpene lactones.

  • PDF

Transferrin-Conjugated Liposome/IL-12 pDNA Complexes for Cancer Gene Therapy in Mice

  • Joo, Soo-Yeon;Kim, Jin-Seok;Park, Heon-Joo;Choi, Eun-Kyung
    • Macromolecular Research
    • /
    • 제13권4호
    • /
    • pp.293-296
    • /
    • 2005
  • Transferrin ($T_{f}$) has been used as a targeting ligand for delivering liposome/interleukin-12 (IL-12) pDNA complexes to cancer cells mostly due to the greater number of transferrin receptors ($T_{f}R$) found on tumor cells than on normal cells. $T_{f}$ was conjugated to liposomes via the reaction of MPB-PE with thiol groups of $T_{f}$ introduced by a heterobifunctional cross-linking agent, N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP). Four days after C26 inoculation when the tumor volume reached ${\sim}100mm^{3}$, tumor-bearing Balb/c mice were injected intravenously with $T_{f}-liposome/IL-12 pDNA$complexes twice a week for 3 weeks. Significant suppression of tumor growth was achieved in the group treated with the $T_{f}-liposome/IL-12 pDNA$ complexes, with a dose of $10{\mu}g$ of IL-12 pDNA showing the highest suppression effect among the tested doses. Similar results were obtained when the therapy was initiated one day after tumor inoculation, although in this case $30{\mu}g$ IL-12 pDNA/$T_{f}-liposome$ complexes showed a significant suppression of tumor growth between 19 and 23 days after tumor inoculation. This result indicates that the transferrin receptor-targeted liposomal system is an efficient delivery agent of therapeutic genes, such as IL-12, in mice and that its potential clinical use warrants further research investigation.

MOSFET형 바이오 센서를 이용한 디옥시 니발레놀의 검출 (Detection of deoxynivalenol using a MOSFET-based biosensor)

  • 임병현;권인수;이희호;최영삼;신장규;최성욱;전향숙
    • 센서학회지
    • /
    • 제19권4호
    • /
    • pp.306-312
    • /
    • 2010
  • We have detected deoxynivalenol(DON) using a metal-oxide-semiconductor field-effect-transistor(MOSFET)-based biosensor. The MOSFET-based biosensor is fabricated by a standard complementary metal-oxide-semiconductor(CMOS) process, and the biosensor's electrical characteristics were investigated. The output of the sensor was stabilized by employing a reference electrode that applies a fixed bias to the gate. Au which has a chemical affinity for thiol was used as the gate metal to immobilize a self-assembled monolayer(SAM) made of 16-mercaptohexadecanoic acid(MHDA). The SAM was used to immobilize anti-deoxynivalenol antibody. The carboxyl group of the SAM was bound to the anti- deoxynivalenol antibody. Anti-deoxynivalenol antibody and deoxynivalenol were bound by an antigen-antibody reaction. In this study, it is confirmed that the MOSFET-based biosensor can detect deoxynivalenol at concentrations as low as 0.1 ${\mu}g$/ml. The measurements were performed in phosphate buffered saline(PBS; pH 7.4) solution. To verify the interaction among the SAM, antibody, and antigen, surface plasmon resonance(SPR) measurements were performed.