• Title/Summary/Keyword: thinning trees

Search Result 103, Processing Time 0.036 seconds

Thinning Intensity for Large Diameter Trees in Korean White Pine Plantation of South Korea

  • Lee, Daesung;Seo, Yeongwan;Park, Jiyoung;Choi, Jungkee
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.1
    • /
    • pp.74-77
    • /
    • 2017
  • The purpose of this study is to analyze the effect of thinning intensity on the growth of large diameter trees in Korean white pine (Pinus koraiensis S. et Z.) plantation. Eight thinning plots were analyzed by categorizing into heavy thinning, light thinning, no thinning (control) according to thinning intensity. As a result, average DBH increased more in heavy thinning plots than in light thinning or unthinned plots. The number of large trees (DBH>25 cm) were obviously shown the most in heavy thinning plots. It is considered that heavy thinning is needed for the production of the large diameter trees.

Influence of Tree Thinning on Vegetative Growth, Yield and Fruit Quality of 'Fuji'/M.9 Apple Trees in the High Density Orchard (고밀식 사과원에서의 간벌이 '후지'/M.9 사과나무의 영양생장, 생산량 및 과실품질에 미치는 영향)

  • Hun-Joong Kweon;Dong-Hoon Sagong
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.104-111
    • /
    • 2023
  • As apple trees mature, it is important to maintain good light distribution within the canopy to produce marketable fruits. Tree thinning is the selective removal of a proportion of trees growing in the orchard to provide more growing space and a good light environment for the remaining trees. This study was conducted over 3 years (14-16 years after planting) to investigate the influence of tree thinning on vegetative growth, yield, fruit quality, and blooming in the 14 years old slender spindle 'Fuji'/M.9 apple trees planted with the tree space of 3.2×1.2 m. The trees were placed in a control group (no thinning; 260 trees per 10 a) or a tree thinning group (thinned 50% of the control; 130 trees per 10 a). The tree thinning successfully improved light penetration, yield per tree, fruit red color, and yield efficiency for 3 years, and the tree thinning controlled the occurrence of biennial bearing. However, tree thinning significantly decreased accumulated yield per 10 a compared with the control. The vegetative growth, yield per tree, soluble solid contents, and blooming were not clear by the occurrence of biennial bearing in the control. These results indicated that tree thinning was a good method for improving light penetration and preventing biennial bearing in the old 'Fuji'/M.9 high-density apple orchards.

Comparative analysis of forest fire danger rating on the forest characteristics of thinning area and non-thinning area on forest fire burnt area (산불피해지역에서 숲 가꾸기 실행유무가 산불에 미치는 영향)

  • Lee, Si-Young;Lee, Myung-Woog;Yeom, Chan-Ho;Kwon, Chun-Geun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.153-156
    • /
    • 2008
  • Comparative analysis of forest fire danger rating on the forest characteristics of thinning area and non-thinning area on forest fire burnt area was studied in this work. To investigate the effect of thinning slash in forest fire, Gangneung-si Wangsan-myeon, Ulgin-gun Wonnam-Myeon, Samchok-si Gagok-Myeon, in which forest fire broke out, were selected. As a result that investigated forest fire danger ratio between thinning slash and non-thinning slash, leeward scorching ratio(36%), crown damage ratio(29%), mortality of branch at the former are higher than those at the latter, leeward scorching ratio of tree, where thinning slash is around, is 10%-20% higher than that of independent tree. So I estimate that thinning slash has a some effect on the intensity of forest fire. And the result to investigate damage of forest fire according to tree species shows that leeward scorching ratio of conifer is 5% higher than that of non-conifer, and mortality of branch of the former is 19% higher than that of the latter. It is considered that forest fire may affect directly to a tree trunk if it diffuse to piled thinning tree because there was no space between thinning trees and trees. Furthermore, it was found that re-ignition had a chance to occur due to lots of piled thinning trees.

  • PDF

Comparative Analysis of Forest Fire Danger Rating on Accumulation Types of the Leaving of Thinning Slash (숲가꾸기 산물의 적재형태에 따른 산불위험성 비교 분석)

  • Lee, Si-Young;Lee, Myung-Woog;Lee, Hae-Pyeong
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.45-53
    • /
    • 2008
  • The effect of thinned trees which are produced from forest thinning on forest fire was studied in this work. To investigate the effect of thinning slash, Yang-yang, In-je, and Ga-pyeong-gun were selected as thinning-areas and non-thinning areas. The research was carried out with the variations of tree's types, area's characteristics, thinning strength, thinning types, and pile types of thinned tree. The survey areas of 14 areas were selected at Yangyang-gun(5 areas), Gapyeong-gun(4 areas), and Inje-gun(5 areas), and on-the-spot investigations were carried out at the thinning areas of 9 and the non-thinning areas of 5, respectively. Non-thinning areas of 5, which are adjacent to thinning areas, were selected for the comparison with thinning areas and for the analysis of risk of forest fire. It is considered that forest fire have no chance to diffuse to a tree trunk because the height of thinned trees was lower than 1 m. However, it is considered that forest fire may affect directly to a tree trunk if it spread to piled thinned tree because there was no space between thinned trees and trees. Furthermore, it was found that re-ignition had a chance to occur due to lots of piled thinning trees.

Comparison of stand structure and growth characteristics between Korean white pine plantation and oak-dominated natural deciduous forest by thinning treatment

  • Lee, Daesung;Choi, Jungkee
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.85-98
    • /
    • 2022
  • Background: Korean white pine (Pinus koraiensis) is a major commercial species, and the importance of the oak trees (Quercus spp.) is increasing due to various factors such as environmental and ecological values. However, more information is required to clearly understand the growth characteristics of these species especially regarding thinning intensity. This study was performed to provide the basic information to develop the silvicultural guideline and field manual by analyzing tree and stand characteristics in line with thinning intensity in the Korean white pine plantation and oak-dominated natural deciduous forest. Results: Diameter at breast height (DBH) and volume changes by the thinning intensity in the Korean white pine plantation were significantly different from those in the oak-dominated deciduous natural forest. In particular, DBH distribution in the pine stand appeared that there were more large diameter trees as the thinning intensity was higher. DBH periodic annual increment (PAI) of the pine stand was higher as the thinning intensity was stronger and the growth period was shorter. This trend was similarly shown in the natural deciduous forest, but the amount of PAI was smaller than in pine stand. The volume PAI after thinning was not decreased over time. In each stand type, the PAI tended to be lower as stand density was higher. The volume PAI in the pine stand was significantly higher than that in the oak-dominated natural deciduous forest. Dead trees occurred the most in the unthinned plots of each stand type, and those were higher in the natural deciduous forest. Ingrowth trees were observed only in the natural deciduous forest, and its distribution was the lowest in unthinned plots; Korean white pine as ingrowth occurred the most frequently among many tree species. Conclusions: Different effects of thinning treatment on DBH and volume PAI, mortality, and ingrowth were observed for each stand. With respect to forest growth, Korean white pine plantation was superior to the oak-dominated natural deciduous forest. The results of this study offer fundamental information for the development of silvicultural guidelines for Korean white pine plantations and oak-dominated natural deciduous forests in Korea.

The Preference Analysis for Optimum Density and Understory Vegetation Management in Healing Forests

  • Kang, Jeong Seok;Ju, Jeong Deok;Shin, Chang Seob
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.5
    • /
    • pp.481-488
    • /
    • 2019
  • The purpose of this study is to suggest how to manage healing forests. Field investigation and surveys were conducted to produce results and 313 questionnaires collected from workers in the forestry sector and ordinary people were analyzed. The results were as follows: it is required to preserve flowering plants, scenic trees, and ecological trees in the understory vegetation, and to remove trees that block the forest landscape, leaving about 50 to 60 percent of the understory vegetation. The preferred density order of broadleaf trees was analyzed as follows: Betula platyphylla > Liriodendron tulipifera > Quercus acutissima. The preferred density order of coniferous trees was analyzed as follows: Abies holophylla > Cryptomerias japonica and Chameacyparis obtusa > Larix kaempferi > Pinus densiflora > Pinus koraiensis. The preferred density in healing forests was 81-89% compared to the number of residual trees for quantitative thinning. Specifically, the preferred density were 87% for P. koraiensis, 86% for L. kaempferi, 81% for P. densiflora, 83% for C. japonica, 84% for C. obtusa and 89% for Q. acutissima. In the case of healing forests, it is recommended to periodically conduct a small-scale thinning with different densities according to the species and diameter of trees based on the results of this study.

Prediction of Larix kaempferi Stand Growth in Gangwon, Korea, Using Machine Learning Algorithms

  • Hyo-Bin Ji;Jin-Woo Park;Jung-Kee Choi
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.195-202
    • /
    • 2023
  • In this study, we sought to compare and evaluate the accuracy and predictive performance of machine learning algorithms for estimating the growth of individual Larix kaempferi trees in Gangwon Province, Korea. We employed linear regression, random forest, XGBoost, and LightGBM algorithms to predict tree growth using monitoring data organized based on different thinning intensities. Furthermore, we compared and evaluated the goodness-of-fit of these models using metrics such as the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE). The results revealed that XGBoost provided the highest goodness-of-fit, with an R2 value of 0.62 across all thinning intensities, while also yielding the lowest values for MAE and RMSE, thereby indicating the best model fit. When predicting the growth volume of individual trees after 3 years using the XGBoost model, the agreement was exceptionally high, reaching approximately 97% for all stand sites in accordance with the different thinning intensities. Notably, in non-thinned plots, the predicted volumes were approximately 2.1 m3 lower than the actual volumes; however, the agreement remained highly accurate at approximately 99.5%. These findings will contribute to the development of growth prediction models for individual trees using machine learning algorithms.

Anatomical Characteristics and Air-dry Density of Young Trees of Teak Clones Planted in Indonesia

  • Hidayati, Fanny;Ishiguri, Futoshi;Marsoem, Sri Nugroho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.463-470
    • /
    • 2017
  • The objectives of this study are to obtain the basic knowledge of anatomical characteristics and wood properties of thinning trees of young teak (Tectona grandis L.F.) for fulfill the timber demand in Indonesia. Nine thinning trees of 5-year-old teak clone trees were used for analyzing the cell morphology and air-dry density. Vessel diameters in pore and outer pore zones were 165 and $90{\mu}m$, respectively. Mean value of fiber diameter, cell wall thickness, and fiber length in outer pore zone were $14.6{\mu}m$, $2.07{\mu}m$, and 1.04 mm, respectively. In addition, mean value of air-dry density was $0.55g/cm^3$. The measurement and values of vessel diameter, fiber diameter, cell wall thickness, fiber length and air-dry density in the experimental had lower than those in the older teak. Therefore, it could be suggested that the wood from thinning young teaks was not appropriate as construction material, but it could be used for furniture which do not need high of strength properties. Furthermore, since the measurements values of anatomical characteristics were still increasing from pith to bark, it could be suggested that 5-year-old teak clones are still in a juvenile phase. Positively significant correlations were found between air-dry density and cell wall thickness, indicating that cell wall thickness is strongly correlated with wood density of teak.

Effects of Thinning and Climate on Stem Radial Fluctuations of Pinus ponderosa and Pinus lambertiana in the Sierra Nevada

  • Andrew Hirsch;Sophan Chhin;Jianwei Zhang;Michael Premer
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.2
    • /
    • pp.81-95
    • /
    • 2023
  • Due to the multiple ecosystem benefits that iconic large, old growth trees provide, forest managers are applying thinning treatments around these legacy trees to improve their vigor and reduce mortality, especially in the face of climate change and other forest health threats. One objectives of this study was to analyze sub-hourly stem fluctuations of legacy ponderosa (Pinus ponderosa Dougl. Ex P. & C. Laws) and sugar pines (Pinus lambertiana Dougl.) in the mixed-conifer forests of the Sierra Nevada in multiple different radius thinning treatments to assess the short-term effects of these treatments. Thinning treatments applied were: R30C0 (9.1 m radius), R30C2 (9.1 m radius leaving 2 competitors), and RD1.2 (radius equaling DBH multiplied by 1 ft/in multiplied by 1.25). The other objective was to assess climatic drivers of hourly stem fluctuations. Using the dendrometeR package, we gathered daily statistics (i.e. daily amplitude) of the stem fluctuations, as well as stem cycle statistics such as duration and magnitude of contraction, expansion, and stem radial increment. We then performed correlation analyses to assess the climatic drivers of stem fluctuations and to determine which radial thinning treatment was most effective at improving growth. We found an important role that mean solar radiation, air temperature, and relative humidity play in stem variations of both species. One of the main findings from a management perspective was that the RD1.2 treatment group allowed both species to contract less on warmer and higher solar radiation days. Furthermore, sugar pine put on more stem radial increment on higher solar radiation days. These findings suggest that the extended radius RD1.2 thinning treatment may be the most effective at releasing legacy sugar and ponderosa pine trees compared to the other forest management treatments applied.

Development of Thinning Effect Analysis Model (TEAM) Using Individual-Tree Distance-Independent Growth Model of Pinus koraiensis Stands (잣나무 임분의 개체목 거리독립생장모델을 이용한 간벌효과 분석모델 개발)

  • Kwon, Soonduk;Kim, Seonyoung;Chung, Joosang;Kim, Hyung-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.742-749
    • /
    • 2007
  • The objective of this study was to develop thinning effect analysis model (TEAM) using individual-tree distance-independent growth model of Pinus koraiensis Stands. The TEAM was designed to analyze thinning effects associated with such thinning prescriptions as the number, timing, intensity, and method of thinnings. To testing TEAM application, stand growth effects were compared with seven scenarios according to thinning prescription plan. In the results, it was possible to estimate the number of trees, height, volume with diameter (DBH) class of individual trees, and average diameter growth, height growth, the number of trees and volume growth per ha of stands. The result of sensitivity analysis on one Pinus koraiensis stand, it was not sure to expect the much more volume at the rotation age by stand density control applying thinning prescription. In the case of thinning, total yield volume has much more $40{\sim}75m^3$ per ha, within 5 cm in average diameter growth and within 1 m in average height growth than thats of non-thinning over increasing stand age. TEAM, as decision making support system, can be used for selecting the thinning prescription trial and determining one of some thinning prescription plan in different site specific stand environments.