• Title/Summary/Keyword: thin-walled composite beam

Search Result 93, Processing Time 0.029 seconds

Ultimate section capacity of steel thin-walled I-section beam-columns

  • Salem, Adel Helmy;Sayed-Ahmed, Ezzeldin Yazeed;El-Serwi, Ahmed Abdelsalam;Korashy, Mohamed Mostafa
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.367-384
    • /
    • 2004
  • A numerical model based on the finite element technique is adopted to investigate the behavior and strength of thin-walled I-section beam-columns. The model considers both the material and geometric nonlinearities. The model results were first verified against some of the currently available experimental results. A parametric study was then performed using the numerical model and interaction diagrams for the investigated beam-columns have been presented. The effects of the web depth-to-thickness ratio, flange outstand-to-thickness ratio and bending moment-to-normal force ratio on the ultimate strength of thin-walled I-section beam-columns were scrutinized. The interaction equations adopted for beam columns design by the NAS (North American Specifications for the design of cold formed steel structural members) have been critically reviewed. An equation for the buckling coefficient which considers the interaction between local buckling of the flange and the web of a thin-walled I-section beam-column has been proposed.

A Simple Beam Model for Thin-Walled Composite Blades with Closed, Two-Cell Sections (폐쇄형 이중세포로 된 박벽 복합재료 블레이드의 단순화 해석 모델)

  • Jung, Sung-Nam;Park, Il-Ju;Lee, Ju-Young;Lee, Jung-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.187-190
    • /
    • 2005
  • A simple beam model based on a mixed method is proposed for the analysis of thin-walled composite blades with a two-cell airfoil section. A semi-complementary energy functional is used to obtain the beam force-displacement relations. The theory accounts for the effects of elastic couplings, shell wall thickness, warping, and warping restraint. All the kinematic relations as well as the cross-section stiffnesses are evaluated in a closed-form through the current beam formulation. The theory has been applied to two-cell composite blades with extension-torsion couplings and fairly good correlation has been observed in comparison with a detailed analysis and other literature.

  • PDF

Structural Behavior of Thin-Walled, Pretwisted Composite Beams (초기 비틀림 각을 갖는 박벽 복합재료 보의 정적 거동 해석)

  • Park, Il-Ju;Hong, Dan-Bi;Jung, Sung-Nam
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.15-20
    • /
    • 2007
  • In this work, the structural response of thin-walled, composite beams with built-in twist angles is analyzed using a mixed beam approach. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. Reissner's semi-complimentary energy functional is used to describe the beam theory and also to deal with the mixed-nature in the beam kinematics. The bending and torsion related warpings introduced by the non-zero pretwist angles are derived in closed-form through the proposed beam formulation. The theory is validated with available literature and detailed finite element analysis results for rectangular solid section beams with elastic couplings. Very good correlation has been obtained for the cases considered.

Transverse Shear Behavior of Thin-Walled Composite Beams with Closed Cross-Sections (폐쇄형 단면을 갖는 박벽 복합재료 보의 전단변형 거동 해석)

  • Park, Il-Ju;Jung, Sung-Nam
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.1-6
    • /
    • 2006
  • In this study, a closed-form analysis has been developed for the transverse shear behavior of thin-walled composite beams with closed cross-sections. The shear flow distributions and cross-section stiffness coefficients are derived analytically by using a mixed beam approach. The theory has been applied to single-celled composite box-beams with elastic couplings. The location of the shear center and the effect of transverse shear deformation on the static behavior of composite beams are investigated in the framework of the analysis. The present results are validated against those of a two-dimensional finite element analysis and a good correlation has been obtained for box-beam cases considered in this study.

Behaviors of CAD and CUS Thick-walled Composite I-Beam Under Torsional Load (비틀림 하중을 받는 두꺼운 복합재료 빔의 거동)

  • Park, Mi-Jung;Chun, Heoung-Jae;Byun, Jun-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.202-206
    • /
    • 2005
  • Most of studies on the open section composite beams are confined to the thin composite beams. There are some works focused on the thick composite beams but they are limited only to closed section beams. Therefore, it is required to develop an appropriate model to analyze the thick open section composite beams. In this study, the cantilever beams of two specific lay-up configurations are considered which are the circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness (CUS) beams. Under the torsional loading, loading induced deformations are obtained for the thick beams using the suggested model. The model includes coupled stiffness and secondary warping effects. The results are compared with those obtained using thin beam model to observe the thickness effects. Those results are also compared with the finite element analysis results.

  • PDF

Modeling and Vibration Feedback Control of Rotating Tapered Composite Thin-Walled Blade

  • Shim, Jae-Kyung;Sungsoo Na
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.380-390
    • /
    • 2003
  • This paper addresses the problem of the modeling and vibration control of tapered rotating blade modeled as thin-walled beams and incorporating damping capabilities. The blade model incorporates non-classical features such as anisotropy, transverse shear, secondary warping and includes the centrifugal and Coriolis force fields. For the rotating blade system, a thorough validation and assessment. of a number of non-classical features including the taper characteristics is accomplished. The damping capabilities are provided by a system of piezoactuators bonded or embedded into the structure and spread over the entire span of the beam. Based on the converse piezoelectric effect, the piezoactuators produce a localized strain field in response to a voltage and consequently, a change of the dynamic response characteristics is induced. A velocity feedback control law relating the piezoelectrically induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and thebeneficial effects upon the closed-loop dynamic characteristics of the blade are highlighted.

Vibration Control of Pretwisted Composite Thin-walled Rotating Beam with Non-uniform Cross Section (초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어)

  • 임성남;나성수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.486-494
    • /
    • 2004
  • This paper addresses the dynamic modeling and closed-loop eigenvibration analysis of composite rotating pretwisted fan blade modeled as non-uniform thin-walled beam with bi-convex cross-section fixed at the certain presetting angle and incorporating piezoelectric induced damping capabilities. The blade model incorporates non-classical features such as transverse shear, rotary inertia and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration of the blade are highlighted.

Vibration Control of Rotating Composite Thin-Walled Pretwisted Beam with Non-uniform Cross Section (초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어)

  • 임성남;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.944-949
    • /
    • 2003
  • This paper addresses the control of free and dynamic response of composite rotating pretwisted blade modeled as non-uniform thin-walled beam fixed at the certain presetting and pretwisted angle and incorporating piezoelectric induced damping capabilities. A distributed piezoelectric actuator pair is used to suppress the vibrations caused by external disturbances. The blade model incorporates non-uniform features such as transverse shear, secondary warping and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration and dynamic characteristics of the blade are highlighted.

  • PDF

Thermally Induced Vibration Analysis of Flexible Spacecraft Appendages (위성체 유연구조물의 진동 해석)

  • Yoon, Il-Soung;Kim, Gu-Sun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1216-1221
    • /
    • 2000
  • Thermally induced vibration response of composite thin walled beams is investigated. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, 'rotary inertia' and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferentially uniform system(CUS) configuration are exploited in connection with the structural coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated.

  • PDF

Bending and Torsional Behaviors of Thick Composite Channel Beam (두꺼운 복합재료 채널빔의 굽힘 및 비틀림 거동)

  • Park, Mi-Jung;Choi, Yong-Jin;Chun, Heung-Jae;Byun, Joon-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.480-485
    • /
    • 2004
  • The applications of composite materials have increased over the past few decades in a variety of structures that require high ratio of stiffness and strength to weight ratios. Recently the thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results.

  • PDF