• Title/Summary/Keyword: thin film process chamber

Search Result 64, Processing Time 0.038 seconds

Improvement of haze ratio of DC-sputtered ZnO:Al thin films through HF vapor texturing

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.319.1-319.1
    • /
    • 2016
  • Recently, the Al-doped ZnO (ZnO:Al) films are intensively used in thin film a-Si solar cell applications due to their high transmittance and good conductivity. The textured ZnO:Al films are used to enhance the light trapping in thin film solar cells. The wet etch process is used to texture ZnO:Al films by dipping in diluted acidic solutions like HCl or HF. During that process the glass substrate could be damaged by the acidic solution and it may be difficult to apply it for the inline mass production process since it has to be done outside the chamber. In this paper we report a new technique to control the surface morphology of RF-sputtered ZnO:Al films. The ZnO:Al films are textured with vaporized HF formed by the mixture of HF and H2SiO3 solution. Even though the surface of textured ZnO:Al films by vapor etching process showed smaller and sharper surface structures compared to that of the films textured by wet etching, the haze value was dramatically improved. We achieved the high haze value of 78% at the wavelength of 540 nm by increasing etching time and HF concentration. The haze value of about 58% was achieved at the wavelength of 800 nm when vapor texturing was used. The ZnO:Al film texture by HCl had haze ratio of about 9.5 % at 800 nm and less than 40 % at 540 nm. In addition to low haze ratio, the texturing by HCl was very difficult to control etching and to keep reproducibility due to its very fast etching speed.

  • PDF

Metal-Organic Chemical Vapor Deposition of $Pb(Zr_xTi_{1-x})O_3$ Thin Films for High-Density Ferroelectric Random Access Memory Application

  • Lee, June-Key;Ku, June-Mo;Cho, Chung-Rae;Lee, Yong-Kyun;Sangmin Shin;Park, Youngsoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.205-212
    • /
    • 2002
  • The growth characteristics of metal-organic chemical vapor deposition (MOCVD) $Pb(Zr_xTi_{1-x})O_3 (PZT) thin films were investigated for the application of high-density ferroelectric random access memories (FRAM) devices beyond 64Mbit density. The supply control of Pb precursor plays the most critical role in order to achieve a reliable process for PZT thin film deposition. We have monitored the changes in the microstructure and electrical properties of films on increasing the Pb precursor supply into the reaction chamber. Under optimized conditions, $Ir/IrO_2/PZT(100nm)/Ir capacitor shows well-saturated hysteresis loops with a remanent polarization (Pr) of $~28{\mu}C/textrm{cm}^2$ and coercive voltage of 0.8V at 2.5V. Other issues such as step coverage, compositional uniformity and low temperature deposition was discussed in viewpoint of actual device application.

High-Efficiency a-Si:H Solar Cell Using In-Situ Plasma Treatment

  • Han, Seung Hee;Moon, Sun-Woo;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok;Lee, Seungmin;Kim, Jungsu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.230-230
    • /
    • 2013
  • In amorphous or microcrystalline thin-film silicon solar cells, p-i-n structure is used instead of p/n junction structure as in wafer-based Si solar cells. Hence, these p-i-n structured solar cells inevitably consist of many interfaces and the cell efficiency critically depends on the effective control of these interfaces. In this study, in-situ plasma treatment process of the interfaces was developed to improve the efficiency of a-Si:H solar cell. The p-i-n cell was deposited using a single-chamber VHF-PECVD system, which was driven by a pulsed-RF generator at 80 MHz. In order to solve the cross-contamination problem of p-i layer, high RF power was applied without supplying SiH4 gas after p-layer deposition, which effectively cleaned B contamination inside chamber wall from p-layer deposition. In addition to the p-i interface control, various interface control techniques such as thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, multiple applications of thin i-layer deposition and H2 plasma treatment, H2 plasma treatment of i-layer prior to n-layer deposition, etc. were developed. In order to reduce the reflection at the air-glass interface, anti-reflective SiO2 coating was also adopted. The initial solar cell efficiency over 11% could be achieved for test cell area of 0.2 $cm^2$.

  • PDF

Multilayer Coatings on Flexible substrate for Electromagnetic Shielding by Using Dry/Wet Hybrid Processes (건습식 혼합공정을 이용한 유연소재 상 전자파 차폐용 다층막 코팅)

  • Lee, Hoon-Seung;Lee, Myeong-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.373-379
    • /
    • 2017
  • Dry processes like evaporation and sputtering in vacuum chamber are difficult to make a uniform, large area and high quality film on thin PET substrate because of PET degradation and bad adhesion. On the other hand, wet processes like electro or electroless plating have complex processes and require high environmental cost. In this study, we successfully prepared $2{\mu}m$ Zn/Cu/Ni multilayers coated on $12{\mu}m$ polyethylene terephthalate (PET) substrate by using dry-wet mixing processes. Their surface electric resistances were evaluated around $0.2{\Omega}$ by using 4 probe measurements. Furthermore, their corrosion resistance also evaluated by natural potential test and compared with other wet, dry and mixing process samples.

Simulations of Effects of Variable Conductance Throttle Valve on the Characteristics of High Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • Thin film electronic devices which brought the current mobile environment could be fabricated only under the high quality vacuum conditions provided by high vacuum systems. Especially for the development of advanced thin film devices, constant high quality vacuum as the deposition pressure is definitely needed. For this purpose, the variable conductance throttle valves were employed to the high vacuum system. In this study, the effects of throttle valve applications on vacuum characteristics were simulated to obtain the optimum design modelling of variable conductance of high vacuum system. Commercial simulator of vacuum system, $VacSim^{(multi)}$, was used on this investigation. Reliability of employed simulator was verified by the simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure of below $10^{-3}torr$. Simulation results were plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

The etching characteristics of $(Ba_{0.6}Sr_{0.4})TiO_{3}$ film Using $Ar/CF_{4}$ Inductively Coupled Plasma ($Ar/CF_{4}$ 유도결합 플라즈마로 식각된 $(Ba_{0.6}Sr_{0.4})TiO_{3}$ 박막의 특성분석)

  • Kang, Pill-Seung;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il;Lee, Soo-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.16-19
    • /
    • 2002
  • (Ba,Sr)TiO3(BST) thin film is an attractive material for the application in high-density dynamic random access memories (DRAMs) because of the high relative dielectric constant and small variation in dielectric properties with frequency. In this study, (Ba0.6,Sr0.4)TiO3 thin films on Pt/Ti/SiO2/Si substrates were deposited by a sol-gel method and the CF4/Ar inductively coupled plasma (ICP) etching behavior of BST thin films had been investigatedby varying the process parameters such as chamber pressure, ICP power, and substrate bias voltage. To analysis the composition of surface residue following etching BST films etched with different Ar/CF4 gas mixing ratio were investigated using x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometer (SIMS).

  • PDF

Properties of Dielectric Constant and Bonding Mode of Annealed SiOCH Thin Film (열처리한 SiOCH 박막의 결합모드와 유전상수 특성)

  • Kim, Jong-Wook;Hwang, Chang-Su;Park, Yong-Heon;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • We studied the electrical characteristics of low-k SiOCH interlayer dielectric(ILD) films fabricated by plasma enhanced chemical vapor deposition (PECVD). BTMSM precursor was evaporated and introduced with the flow rates from 16 sccm to 25 sccm by 1 sccm step with the constant flow rate of 60 sccm $O_2$ in process chamber. The vibrational groups of SiOCH thin films were analyzed by FT!IR absorption lines, and the dielectric constant of the low-k SiOCH thin films were obtained by measuring C-V characteristic curves. The heat treatment on SiOCH thin films reduced the FTIR absorption intensity of the Si-O-$CH_3$ bonding group and Si-$CH_3$ bonding group but increased the intensity of Si-O-Si(C) bonding group. The SiOCH ILD films could have low dielectric constant $k\;{\simeq}\;2$ and also be reduced further by decreasing the $CH_3$ group density and increasing Si-O-Si(C) group density through annealing process.

The etch characteristic of TiN thin films by using inductively coupled plasma (유도결합 플라즈마를 이용한 TiN 박막의 식각 특성 연구)

  • Park, Jung-Soo;Kim, Dong-Pyo;Um, Doo-Seung;Woo, Jong-Chang;Heo, Kyung-Moo;Wi, Jae-Hyung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.74-74
    • /
    • 2009
  • Titanium nitride has been used as hardmask for semiconductor process, capacitor of MIM type and diffusion barrier of DRAM, due to it's low resistivity, thermodynamic stability and diffusion coefficient. Characteristics of the TiN film are high intensity and chemical stability. The TiN film also has compatibility with high-k material. This study is an experimental test for better condition of TiN film etching process. The etch rate of TiN film was investigated about etching in $BCl_3/Ar/O_2$ plasma using the inductively coupled plasma (ICP) etching system. The base condition were 4 sccm $BCl_3$ /16 sccm Ar mixed gas and 500 W the RF power, -50 V the DC bias voltage, 10 mTorr the chamber pressure and $40\;^{\circ}C$ the substrate temperature. We added $O_2$ gas to give affect etch rate because $O_2$ reacts with photoresist easily. We had changed $O_2$ gas flow rate from 2 sccm to 8 sccm, the RF power from 500 W to 800 W, the DC bias voltage from -50 V to -200 V, the chamber pressure from 5 mTorr to 20 mTorr and the substrate temperature from $20\;^{\circ}C$ to $80\;^{\circ}C$.

  • PDF

Characteristics of Rhenium-Iridium coating thin film on tungsten carbide by multi-target sputter

  • Cheon, Min-Woo;Kim, Tae-Gon;Park, Yong-Pil
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.328-331
    • /
    • 2012
  • With the recent development of super-precision optical instruments, camera modules for devices, such as portable terminals and digital camera lenses, are increasingly being used. Since an optical lens is usually produced by high-temperature compression molding methods using tungsten carbide (WC) alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coatings for the core surface. In this study, Rhenium-Iridium (Re-Ir) thin films were deposited onto a WC molding core using a sputtering system. The Re-Ir thin films were prepared by a multi-target sputtering technique, using iridium, rhenium, and chromium as the sources. Argon and nitrogen were introduced through an inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having a composition ratio of 30 : 70, and the Re-Ir thin films were formed with a 240 nm thickness. Re-Ir thin films on WC molding core were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), and Ra (the arithmetical average surface roughness). Also, adhesion strength and coefficient friction of Re-Ir thin films were examined. The Re-Ir coating technique has received intensive attention in the coating processes field because of promising features, such as hardness, high elasticity, abrasion resistance and mechanical stability that result from the process. Re-Ir coating technique has also been applied widely in industrial and biomedical applications. In this study, WC molding core was manufactured, using high-performance precision machining and the effects of the Re-Ir coating on the surface roughness.

Development of Nanostructured Light-Absorbers for Ultrasound Generation by Using a Solution-Based Process

  • Sang, Pil Gyu;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.377-377
    • /
    • 2016
  • Under nanosecond-pulsed laser irradiation, light-absorbing thin films have been used for photoacoustic transmitters for ultrasound generation. Especially, nanostructured absorbers are attractive due to high optical absorption and efficient thermoacoustic energy conversion: for example, 2-dimensional (2-D) gold nanostructure array, synthetic gold nanoparticles, carbon nanotubes (CNTs), and reduced graphene oxides. Among them, CNT has been used to fabricate a composite film with polydimethylsiloxane (PDMS) that exhibits excellent photoacoustic conversion performance for high-frequency, high-amplitude ultrasound generation. Previously, CNT-PDMS nanocomposite films were made by using a high-temperature chemical vapor deposition (HTCVD) process for CNT growth. However, this approach is not suitable to fabricate large-area CNT films (>several cm2). This is because a chamber dimension of HTCVD is limited and also the process often causes nonuniform CNT growth when the film area increases. As an alternative approach, a solution-based process can be used to overcome these issues. We develop PDMS composite transmitters, based on the solution process, using several nanostructured light-absorbers such as CNTs, nanoink powders, and imprinted regular arrays of gold nanostructure. We compare fabrication processes of each composite transmitters and photoacoustic output performance.

  • PDF