• Title/Summary/Keyword: thin film interconnection

Search Result 49, Processing Time 0.027 seconds

Electromigration Characteristics in PSG/SiO$_2$ Passivated Al-l%Si Thin Film Interconnections

  • Kim, Jin-Young
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.2
    • /
    • pp.39-44
    • /
    • 2003
  • Recent ULSI and multilevel structure trends in microelectronic devices minimize the line width down to a quarter micron and below, which results in the high current densities in thin film interconnections. Under high current densities, an EM(electromigration) induced failure becomes one of the critical problems in a microelectronic device. This study is to improve thin film interconnection materials by investigating the EM characteristics in PSG(phosphosilicate glass)/SiO$_2$ passivated Al-l%Si thin film interconnections. Straight line patterns, wide and narrow link type patterns, and meander type patterns, etc. were fabricated by a standard photholithography process. The main results are as follows. The current crowding effects result in the decrease of the lifetime in thin film interconnections. The electric field effects accelerate the decrease of lifetime in the double-layered thin film interconnections. The lifetime of interconnections also depends upon the current conditions of P.D.C.(pulsed direct current) frequencies applied at the same duty factor.

  • PDF

Dielectric Passivation Effects on the Electromigration Phenomena for the Improvement of Microelectronic Thin Film interconnection Materials (극미세 전자소자 박막배선 재료 개선을 위한 엘렉트로마이그레이션 현상에 미치는 절연보호막 효과)

  • 박영식;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.161-168
    • /
    • 1996
  • For the improvement of microelectronic thin film interconnection materials, dielectric passivation effects on the electromigration phenomena were studied. Using Al-1%Si, various shaped patterns were fabricated and dielectric passivation layers of several structures were deposited on the $SiO_2$ layer. Lifetime of straight pattern showed 2~5 times longer than the other patterns that had various line width and area. It is believed that the flux divergence due to the structural inhomogeneity and so the current crowding effects shorten the lifetime of thin film interconnections. The lifetime of thin film interconnections seems to depend on both the passivation materials and the passivation thickness. PSG/$SiO_2$ dielectric passivation layers showed longer lifetime than $Si_3N_4$ dielectric passivation layers. This results from the PSG on $SiO_2$ layer reduces stress and from the improvement of resistance to the moisture and to the mobile ion such as sodium. This is also believed that the lifetime of thin film interconnections seems to depend on the passivation thickness in case of the same deposition materials.

  • PDF

A Study on the Electromigration Characteristics in Ag, Cu, Au, Al Thin Films (Ag, Cu, Au, Al 박막에서 엘렉트로마이그레이션 특성에 관한 연구)

  • Kim, Jin-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • Recent ULSI and multilevel structure trends in microelectronic devices minimize the line width down to less than $0.25{\mu}m$, which results in high current densities in thin film interconnections. Under high current densities, an EM(electromigration) induced failure becomes one of the critical problems in a microelectronic device. This study is to improve thin film interconnection materials by investigating the EM characteristics in Ag, Cu, Au, and Al thin films, etc. EM resistance characteristics of Ag, Cu, Au, and Al thin films with high electrical conductivities were investigated by measuring the activation energies from the TTF (Time-to-Failure) analysis. Optical microscope and XPS (X-ray photoelectron spectroscopy) analysis were used for the failure analysis in thin films. Cu thin films showed relatively high activation energy for the electromigration. Thus Cu thin films may be potentially good candidate for the next choice of advanced thin film interconnection materials where high current density and good EM resitance are required. Passivated Al thin films showed the increased MTF(Mean-time-to-Failure) values, that is, the increased EM resistance characteristics due to the dielectric passivation effects at the interface between the dielectric overlayer and the thin film interconnection materials.

Characteristics of metal thin-film pressure sensors by on silicon thin-film mer (실리콘 박막 멤브레인상에 제작된 금속박막형 압력센서의 특성)

  • Choi, Sung-Kyu;Nam, Hyo-Duk;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1372-1374
    • /
    • 2001
  • This paper describes fabrication and characteristics of metal thin-film pressure sensor for working at high temperature. The proposed pressure sensor consists of a chrom thin-film, patterned on a Wheatstone bridge configuration, sputter-deposited onto thermally oxidized Si membranes with an aluminium interconnection layer. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.097 $\sim$ 1.21 mV/V kgf/$cm^2$ in the temperature range of 25 $\sim$ $200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Fabrication of Metal Thin-Film Pressure Sensor and Its Characteristics (금속박막형 압력세서의 제작과 그 특성)

  • 정귀상;최성규;남효덕;이원재;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.405-409
    • /
    • 2001
  • This paper describes fabrication and characteristics of metal thin-film pressure sensor for working at high temperature. The proposed pressure consists of a chrom thin-film, patterned on a Wheat stone bridge configuration, sputter-deposited onto thermally oxidized Si membranes with an aluminium interconnection layer. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.097∼1.21mV/V$.$kgf/$\textrm{cm}^2$ in the temperature range of 25∼200$^{\circ}C$ and the maximum non-linearity is 0.43%FS.

  • PDF

Optical modulation of interconnection strength using amorphous $As_2S_3$ thin film (비정질 $As_2S_3$ 박막을 이용한 광연결 세기의 변조방식)

  • 김홍만
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.215-218
    • /
    • 1990
  • A method for optical representation and modulation of synaptic interconnections between neurons using photoanisotropic amorphous As2S3 thin film is discussed. Experimental results show that the proposed method can be used for the representation of not only excitatory synaptic connections but also inhibitory synaptic connections. Applications of the method to the implementation of optical learning machine is also discussed.

  • PDF

Soft Interconnection Technologies in Flexible Electronics (플렉시블 전자소자의 유연전도성 접합 기술)

  • Lee, Woo-Jin;Lee, Seung-Min;Kang, Seung-Kyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.33-41
    • /
    • 2022
  • Recent necessities of research have emerged about soft interconnection technologies for stable electric connections in flexible electronics. Mechanical failure in conventional metal solder interconnection can be solved as soft interconnections based on a small elastic modulus and a thin thickness. To enable stable electric connection while improving mechanical properties, highly conductive materials be thinned or mixed with a material that has a small elastic modulus. Representative soft interconnection technologies such as thin-film metallization, flexible conductive adhesives, and liquid metal interconnections are presented in this paper, and be focused on mechanical/electric properties improving strategies and their applications.

Synthesis and Characterization of Methyltriphenylsilane for SiOC(-H) Thin Film (SiOC(-H) 박막 제조용 Methyltriphenylsilane 전구체 합성 및 특성분석)

  • Han, Doug-Young;Park Klepeis, Jae-Hyun;Lee, Yoon-Joo;Lee, Jung-Hyun;Kim, Soo-Ryong;Kim, Young-Hee
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.600-605
    • /
    • 2010
  • In order to meet the requirements of faster speed and higher packing density for devices in the field of semiconductor manufacturing, the development of Cu/Low k device material is explored for use in multi-layer interconnection. SiOC(-H) thin films containing alkylgroup are considered the most promising among all the other low k candidate materials for Cu interconnection, which materials are intended to replace conventional Al wiring. Their promising character is due to their thermal and mechanical properties, which are superior to those of organic materials such as porous $SiO_2$, SiOF, polyimides, and poly (arylene ether). SiOC(-H) thin films containing alkylgroup are generally prepared by PECVD method using trimethoxysilane as precursor. Nano voids in the film originating from the sterichindrance of alkylgroup lower the dielectric constant of the film. In this study, methyltriphenylsilane containing bulky substitute was prepared and characterized by using NMR, single-crystal X-ray, GC-MS, GPC, FT-IR and TGA analyses. Solid-state NMR is utilized to investigate the insoluble samples and the chemical shift of $^{29}Si$. X-ray single crystal results confirm that methyltriphenylsilane is composed of one Si molecule, three phenyl rings and one methyl molecule. When methyltriphenylsilane decomposes, it produces radicals such as phenyl, diphenyl, phenylsilane, diphenylsilane, triphenylsilane, etc. From the analytical data, methyltriphenylsilane was found to be very efficient as a CVD or PECVD precursor.